Efficient SMA Actuation - Design & Control Concepts

Dr.-Ing. Paul Motzki
Intelligent Material Systems Lab (Prof. Seelecke)
Department of Systems Engineering / Department of Material Science and Engineering
Saarland University, Germany
paul.motzki@imsi.uni-saarland.de
Shape Memory Alloy – SMA

Phase transformation from Martensite to Austenite during a heating and cooling period

„Metal muscles“ – Nickel-Titanium (NiTi) wires

500μm SMA wire lifting 10kg
SMA Properties

- HIGHEST ENERGY DENSITY
- High Forces
- Unique form factors
- Noiseless operation
- Bio-compatible
- SELF-SENSING

Compact and Lightweight Actuator-Sensor Systems

SMA drawbacks:

- High strokes require long wire length or gear/transmission system
- Holding activated positions is **energy-intensive** (mono-stable)
- Frequency directly coupled to cooling time of the SMA wires (biasing mechanism necessary)

→ Development of an SMA actuator, that...

- ...has a **compact design** and can still generate high strokes and high forces.
- ...can hold 2 positions energy-free (**bi-stable**).
- ...can reach **higher frequencies** in both switching directions.
Core item: **Bi-stable element** (e.g. metal sheet beam)
Actuator Properties

1. **Bi-Stability → 2 defined energy-free positions**

2. **Antagonistic Wires → No passive cooling time**

3. **Actuator Stroke** scaled by SMA attachment

PATENT PENDING - (licensed in USA)

SMA Suction Cup
Bi-stable SMA Suction Cup

1. **Standby**
 - No wire actuated
 - Membrane in plane state
 - Suction cup ready to grip

2. **Gripping**
 - Lower wire actuated
 - Bi-stable spring snaps upwards
 - Vacuum generation
 - Gripping of workpiece

3. **Holding**
 - No wire actuated
 - Bi-stable spring maintains vacuum
 - Workpiece is fixed

4. **Release**
 - Upper wire actuated
 - Bi-stable spring snaps downwards
 - Vacuum purge
 - Workpiece released

(c) intelligent Material Systems Laboratory (iMSL) Paul Motzki
Bi-stable SMA Suction Cup

MOTEK 2017 & Hannover Messe 2018

(c) intelligent Material Systems Laboratory (iMSL) Paul Motzki
Proportional SMA Actuators
Advanced Control Concept

Given supply voltages in applications:
12 V, 24 V, 48V, 230 V, 400 V, ..., DC/AC

Magnitudes higher than recommendations

- High Speed Activation
 → High strokes and forces in *millisecond*-range

- Energy-efficiency
 → Activation under *adiabatic* conditions

Experimental Setup

(c) intelligent Material Systems Laboratory (iMSL) Paul Motzki
Energy-Efficiency

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8.33</td>
<td>1000</td>
<td>1008</td>
<td>1.2</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>8.33</td>
<td>226</td>
<td>237.1</td>
<td>0.637</td>
<td>53.1</td>
</tr>
<tr>
<td>16</td>
<td>8.33</td>
<td>77</td>
<td>95.2</td>
<td>0.370</td>
<td>30.8</td>
</tr>
<tr>
<td>24</td>
<td>8.33</td>
<td>29.2</td>
<td>57.2</td>
<td>0.305</td>
<td>25.4</td>
</tr>
<tr>
<td>30</td>
<td>8.33</td>
<td>17.7</td>
<td>49</td>
<td>0.288</td>
<td>24</td>
</tr>
<tr>
<td>35</td>
<td>8.33</td>
<td>12.8</td>
<td>45.8</td>
<td>0.282</td>
<td>23.5</td>
</tr>
<tr>
<td>40</td>
<td>8.33</td>
<td>9.74</td>
<td>43.9</td>
<td>0.280</td>
<td>23.3</td>
</tr>
<tr>
<td>48</td>
<td>8.33</td>
<td>6.71</td>
<td>42</td>
<td>0.277</td>
<td>23.1</td>
</tr>
<tr>
<td>70</td>
<td>8.33</td>
<td>3.08</td>
<td>39.7</td>
<td>0.272</td>
<td>22.7</td>
</tr>
<tr>
<td>110</td>
<td>8.33</td>
<td>1.21</td>
<td>38.5</td>
<td>0.267</td>
<td>22.3</td>
</tr>
<tr>
<td>125</td>
<td>8.33</td>
<td>0.94</td>
<td>38.3</td>
<td>0.266</td>
<td>22.2</td>
</tr>
</tbody>
</table>

Energy savings up to 80%

Relevance:
- Trigger, safety, 1-time actuation, ...

AC Activation

Real time energy measurement

\[W_{el} = \sum_{i=1}^{n} U_i \cdot I_i \cdot \Delta t \]
Energy-Efficient PWM

Same displacement with 63% energy savings
Thank you for your attention!