

Microstructure, durability and mechanical properties of mortars prepared using ternary binders with addition of slag, fly ash and limestone

Javier Ibáñez-Gosálvez, Teresa Real-Herraiz, José Marcos Ortega

Departamento de Ingeniería Civil, Universidad de Alicante (Spain) Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia (Spain)

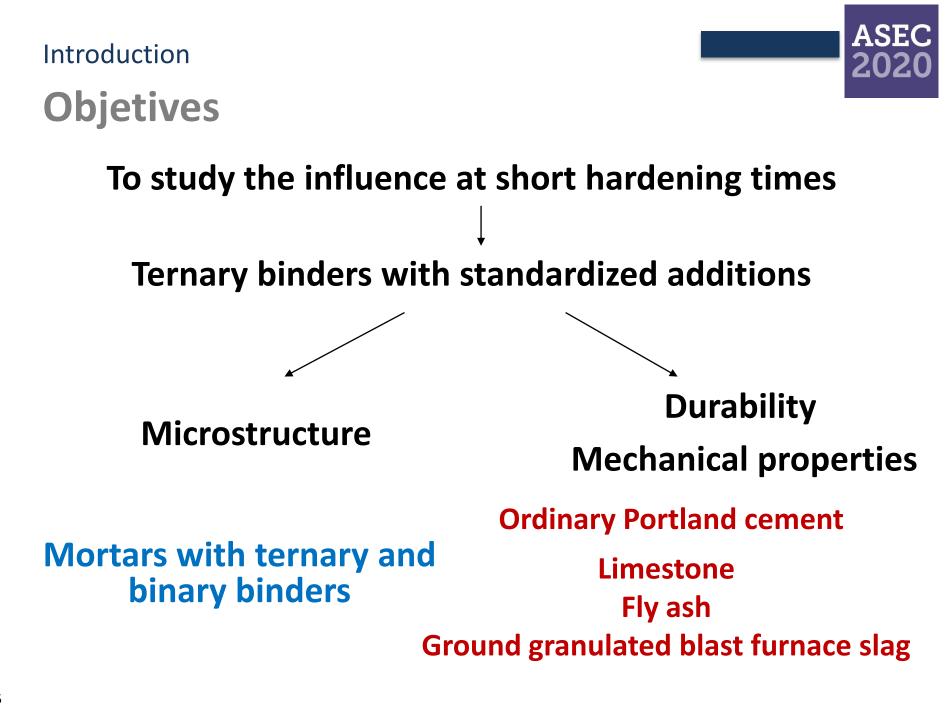
1. Introduction

2. Materials and methods

3. Results and discussion

4. Conclusions

Introduction



Introduction

Eco-friendly cement-based materials

- More sustainable cement industry → Increase the use of eco-friendly materials
- Eco-friendly cements:
 - Lower content of clinker replaced by additions
 - Blast furnace slag, fly ash and limestone
 - Improvement of properties of cement-based materials
- Ternary binders:
 - Clinker partially replaced by two additions
 - Synergetic effect of both additions
 - Promising research field for improving sustainability of cement industry
 - Their manufacture is still very low, at least in Spain

Materials and methods
Samples preparation

- Materials (mortars):
 - REF series \rightarrow CEM I 42,5 R (100%)
 - L series → CEM I 42,5 R (70%) + limestone (30%)
 - S series → CEM I 42,5 R (70%) + ground granulated blast furnace slag (30%)
 - V series → CEM I 42,5 R (70%) + fly ash (30%)
 - SL series → CEM I 42,5 R (70%) + ground granulated blast furnace slag (15%) + limestone (15%)
 - SV series → CEM I 42,5 R (70%) + ground granulated blast furnace slag (15%) + fly ash (15%)
 - VL series → CEM I 42,5 R (70%) + fly ash (15%) + limestone (15%)

Samples preparation

- Materials (mortars):
 - Water to binder ratio = 0.5
 - Fine aggregate to cement ratio = 3
 - Mortars were stored under optimum laboratory condition (20°C and 95% RH) until the testing age (28 hardening days)
- Samples:
 - Cylindrical \rightarrow 5 cm diameter and 6 cm height
 - Cylindrical \rightarrow 10 cm diameter and 22 cm height
 - Prismatic \rightarrow 4 cm x 4 cm x 16 cm

Experimental techniques

Influence at short hardening times produced by ternary binders with standardized additions Non-destructive electrical resistivity Microstructure Mechanical properties Absorption atter immersion

• Tests performed at 28 hardening days.

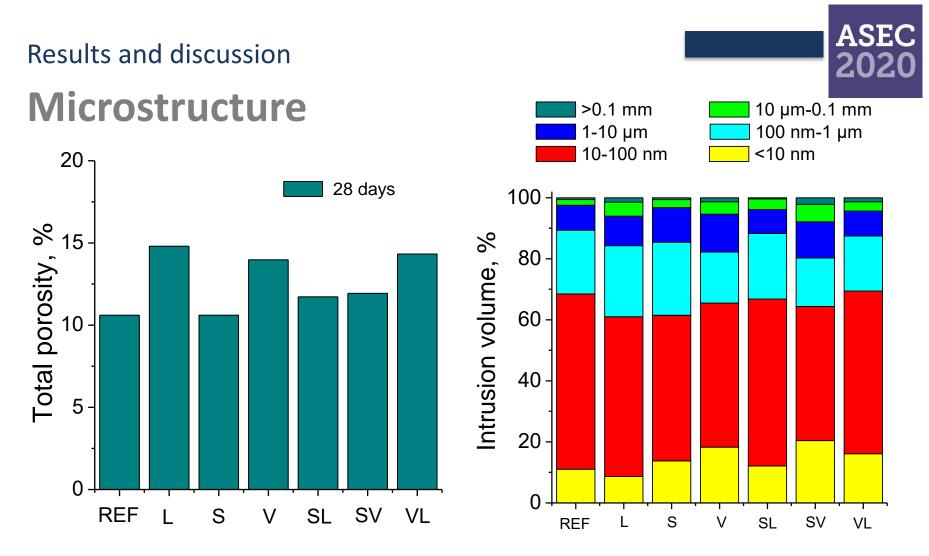
Mercury intrusion porosimetry

- Poremaster-60 GT porosimeter
- Total porosity
- Pore size distributions
- Percentage of Hg retained at the end of the test
- Pieces taken from cylindrical specimens 5 cm diameter and 6 cm height

Non-destructive electrical resistivity

- Wenner four-point test
- Provides data about pore connectivity
- Spanish standard UNE 83988-2
- Cylinders 10 cm diameter and 22 cm height

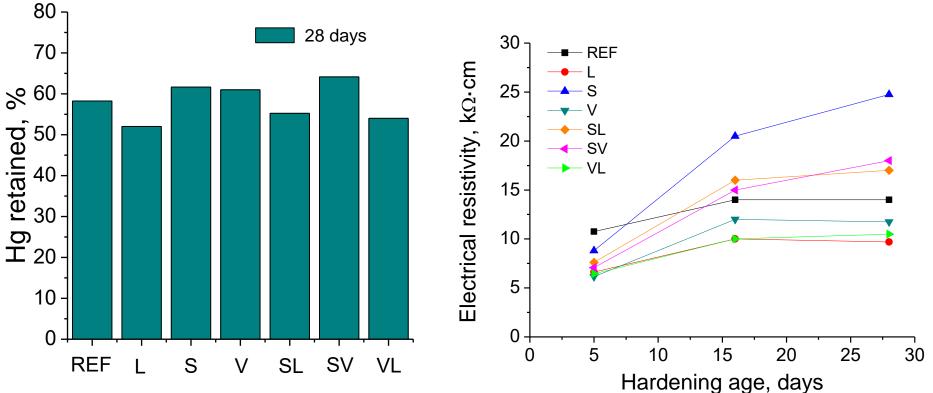
Absorption after immersion


- ASTM Standard C642-06
- Pieces taken from cylindrical specimens 5 cm diameter and 6 cm height

Compressive strength

- Spanish and European standard UNE-EN 1015-11
- Prismatic samples 4 cm x 4 cm x 16 cm

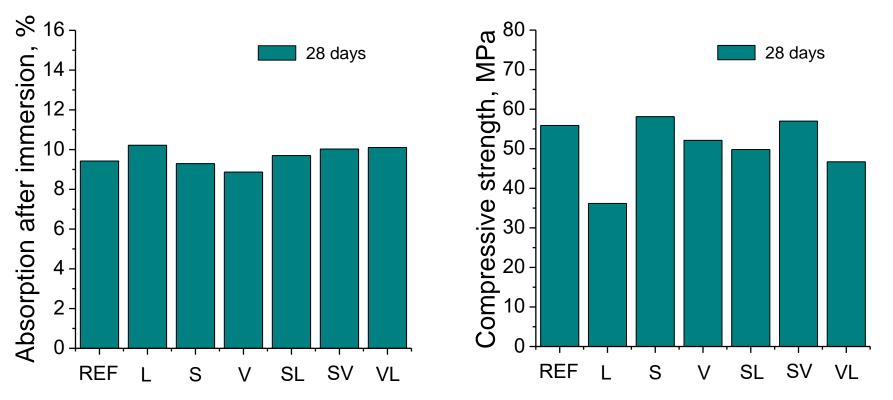
Results and discussion



- Total porosity \rightarrow Lowest for REF and S \rightarrow Highest for L mortars
- Highest refinement \rightarrow Series with presence of slag and fly ash
- Especially noticeable high percentage pores <10 nm for SV

Results and discussion

Microstructure



ASE

- Hg retained \rightarrow Higher for S, V and SV \rightarrow Lowest for L mortars
- Electrical resistivity \rightarrow Increasing trends for all
- Highest electrical resistivity → Binders with slag (S, SV and SL series) → Effects of slag hydration in the short term

Results and discussion

Durability and mechanical properties

ASE

- In general, relatively similar absorption for all the studied mortars
- Higher strength for REF, S and SV mortars
- Good strength performance at 28 days of the ternary binder with both slag and fly ash (SV) → Synergetic effects of both additions

Conclusions

Conclusions

Conclusions

- The lowest total porosity values were noted for reference mortars and for those made with binary binder which only contained slag → Development of slag and clinker hydration → Series with higher content of clinker and slag
- The highest total porosity, the lowest pore refinement, the lowest electrical resistivity and the smallest compressive strength → Binary mortars with the only addition of limestone → Not an active addition
- Mortars with fly ash and slag showed higher refinement of microstructure → Especially noticeable for the ternary binder with both slag and fly ash additions → Synergetic effects of combining both additions

ASEC 2020

Conclusions

Conclusions

- The absorption after immersion was relatively similar at 28 hardening days for all the mortars studied → Water absorption of the studied binders was overall adequate.
- Compressive strengths → Good performance at 28 hardening days of the ternary binder which combined slag and fly ash → Synergetic effects of slag hydration and fly ash pozzolanic reactions → Improving the strength of the material
- The addition of limestone in the ternary binders entailed a reduction of the compressive strength compared to binary binders only with slag or fly ash.

Acknowledgments

Project GV/2019/070

Cementos Portland Valderrivas, S.A.

Microstructure, durability and mechanical properties of mortars prepared using ternary binders with addition of slag, fly ash and limestone

Javier Ibáñez-Gosálbez, Teresa Real-Herraiz, José Marcos Ortega

Departamento de Ingeniería Civil, Universidad de Alicante (Spain) Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia (Spain)

