
 

                

The 3rd International Electronic Conference on Geosciences, 7 - 13 December 2020 

Conference Proceedings Paper 1 

Earthquake Damage Assessment Based on Deep 2 

Learning Method Using VHR Images 3 

Masoud Moradi 1, Reza Shah-Hosseini2,* 4 

1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran; 5 
masoudmoradi@ut.ac.ir  6 

2 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran; 7 
rshahosseini@ut.ac.ir  8 

* Correspondence: rshahosseini@ut.ac.ir; Tel.: +98-21-6111-4527 9 

Abstract: One of the numerous fundamental tasks to perform rescue operations after the 10 
earthquake, check the status of buildings that have been destroyed. The methods to obtain the 11 
damage map are two categories Shared. The first group of methods uses data before and after the 12 
earthquake, and the second group only uses the data after the earthquakes that we want to offer a 13 
flexible and according to information that we are available to achieve the damage map. In this paper, 14 
we work on VHR satellite images of Haiti, and UNet which is a convolution network. The learning 15 
algorithms profound changes to improve the results were intended to identify the damage of the 16 
buildings caused by the earthquake. The deep learning algorithms require very training data that 17 
it's one of the problems that we want to solve. As well as Unlike previous studies by examining 18 
pixel by pixel degradation, ultimate precision to increase that shows the success of this approach 19 
felt and has been able to reach the overall accuracy of 68.71%. The proposed method for other 20 
natural disasters such as rockets, explosions, tsunamis, and floods also destroyed buildings in urban 21 
areas is to be used. 22 
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 24 

1. Introduction 25 

The world has constantly influenced natural disasters such as earthquakes, floods, and tsunami 26 

during civilization. They are considered to be extremely tragic threats and ruined for human security 27 

and property. A quick evaluation of infrastructure damage after a dangerous event has an essential 28 

role in emergency response management and recovery planning [1,2]. 29 

The traditional approach to estimating the spatial distribution of earthquake losses in buildings 30 

through building field inspection is made by a volunteer group consisting of engineers, architects, 31 

and other construction industry professionals. This precise inspection process is essential because 32 

evaluations are reliable and give us valuable information on the damaged building's seismic function. 33 

However, the duration of these inspections makes them impossible for emergency support and 34 

planning for early recovery. Depending on the availability of qualified specialists and the 35 

geographical distribution of damaged buildings, the field inspection process can last for months [3]. 36 

Therefore, for decades, remote sensing techniques play an essential role in examining the 37 

earthquake's data damage, especially due to its fast availability after catastrophic and large coverage. 38 

In most studies, remote sensing measurements have been used to detect collapsed buildings using 39 

different methods before and after the event. Some researchers have only used post-event 40 
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information and the similarity between damaged buildings that use it to distinguish between 41 

destroyed and undamaged buildings that limit this method's accuracy [4,6]. 42 

As the main sources of remote sensing, optical images usually provide only two-dimensional 43 

information that is not suitable for detecting objects; using LIDAR and SAR can improve 44 

determination and identification, especially for three-dimensional objects. Because information about 45 

The height, especially for the three-dimensional interpretation of the building's state, can be detected 46 

by damaged and collapsed buildings by comparing the altitude information before and after the 47 

event in urban areas. The method of producing accurate altitude data is tough and expensive, which 48 

leads to the inaccessibility of the precise 3D data before and after the earthquake. UAV allows for 49 

higher resolution images and cloud 3D points. But, the preparation of UAV images is challenging 50 

before the earthquake because UAV images are not continually covering all regions of the world. 51 

However, satellite images are still the primary and commonest source for damage assessment. For 52 

this reason, they are more reliable and more accessible to detect the destruction of buildings [7-9]. 53 

With the rapid improvement of satellite optics sensors' spatial resolution, Optical data is 54 

promising data for identifying earthquake damages. However, achieving remote sensing VHR 55 

images before the earthquake is not easy. Therefore, in new studies, We have tried to achieve good 56 

results without having the before event information. This has led to valuable algorithms that can use 57 

with both access and not access to data before the earthquake. The other problem with satellite images 58 

is that they cant detect damage to the building's length due to the imaging of the above [10,11]. 59 

The most common method is to detect damage based on change detection techniques. Images 60 

before and after an event have been collected and create an image difference, representing the 61 

difference between the two datasets. However, this method limits the requirement to have two sets 62 

of before and after the earthquake that may not always be available. In such circumstances, machine 63 

learning methods had been introduced. Deep learning, one of the advanced techniques in the field of 64 

machine learning as the best method for complex and non-linear feature extraction, is at a high level. 65 

In recent years, convolutional neural networks (CNN) due to outstanding performance in extracting 66 

features on remote sensing have been widely used [12,13]. 67 

In terms of operational response to the disaster, many challenges remain, two of them to declare 68 

that we have and try to solve these challenges [14]. 69 

 70 

1. Good performance of deep learning algorithms is limited to the size of data available, and the 71 

network structure is considered. One of the most critical challenges for using a deep learning method 72 

for monitoring the buildings damaged in the disaster is that the training images of damaged targets 73 

are usually not very much. In terms of operational response to the disaster, many challenges remain, 74 

two of them to declare that we have and try to solve these challenges. 75 

 76 

2.  The size of blocks that have been labeled as undamaged or damaged buildings by the algorithm 77 

is ultimately a significant impact on overall accuracy. Previous studies major ways only a label on a 78 

large block was allocated. However, this block contains a large number of pixels is irrelevant. 79 

Therefore, theoretically, the pixel-based labeling method is more accurate [15,16]. 80 

 81 
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 U-Net, which is essentially a convolution network, can ultimately reduce the challenges, and we 82 

change its layers to make it better performance [17]. 83 

In this study, the convolution neural network U-net for Monitoring Haiti earthquake damage on 84 

pixel-based images with high-resolution remote sensing is implemented. 85 

2. Experiments   86 

2.1. Datasets 87 

On January 12th, 2010, an earthquake with a magnitude of 7 on the Richter scale hit Port-au-88 
Prince, capital of Haiti, scrambled. In Port-au-Prince and in the southern areas of Haiti, about 97,294 89 
houses completely destroyed and 188,383 houses have suffered damage [18]. The study area is part 90 
of the city of Port-au-Prince is shown in Figure 1. In this study, by Worldview 2 satellite imagery, 91 
pre-image acquired on January 16th, 2010, and post-image obtained on October 1st, 2009. The satellite 92 
image consists of four multi-spectral bands with a resolution of 2 m and one high-resolution 93 
panchromatic band with 0.5 m resolution. Four high-resolution colored bands are used in this 94 
algorithm, through integrating the multi-spectral and panchromatic bands. To assess damaged and 95 
undamaged buildings use the International Institute UNITAR / UNOSAT data and Earthquake 96 
Geospatial Data Dataverse (CGA, Harvard Univ) dataset with visual interpretation [19,20]. 97 

 98 
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 99 

Figure 1. The location of the study area 100 
 101 

View of the area before and after the earthquake is shown in Figure 2. 102 

 103 

Figure 2. The right image is before the earthquake, and the left image is after the earthquake. 104 
 105 

2.2. Method 106 

In this study, an approach based on deep learning algorithms and neural networks for 107 
monitoring the buildings destroyed by the earthquake is presented. In the way that we're going to 108 
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explain it, based on previous studies on the use of VHR optical data is emphasized. The solution 109 
proposed to lack of access to the data before the earthquake [21-23]. 110 

Deep learning is said a neural network with a large number of hidden layers to extract many 111 
features from raw data. Data can be an image, pixel, signal, and so on. The different architecture of 112 
this kind exists today. The number of layers greater (deeper), so the more non-linear characteristics 113 
are obtained which is why we are interested in deep learning. Figure 3 shows the general view of the 114 
deep learning networks. Unlike deep learning, machine learning extracts features by itself, and they 115 
need to identify the characteristics and feature engineering [24-26]. 116 

 117 

Figure 3. Design of layers of the deep learning network 118 
The UNet algorithm, due to high precision, high-speed processing, and learning, no need for 119 

large data sets to learn and complex and expensive hardware, in recent years Popular in detection 120 
the objects of the image and image processing has become. The characteristics of this network enable 121 
us to overcome two major challenges that we mentioned in the introduction [27,28]. 122 
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 123 

Figure 4. The framework proposed in this paper for monitoring the destruction of buildings in earthquake 124 
 125 
 126 

2.2.1. Pre-processing 127 

The images collected before and after the event were compiled into a large image. The co-128 
registration procedure was implemented on the pre and post-event images. Bands of pre-post images 129 
pan sharped and stacked together [29]. At this stage, each pixel should be assigned a value of zero or 130 
one that reflects the state of the destruction of the building. Both images and ground-truth data of 131 
building damage were projected into the UTM/WGS84 geo-referenced coordinate system. 132 

Theoretically and ideally, the image tiles with the pixel size of an arbitrary 2n are suitably used as the 133 
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input [30]. When selecting random patches to do the training, we try to choose the patches that more 134 
than half of the pixels within them labeled as undamaged or damaged, it is. 135 

 136 

2.2.2. Network Architecture and training 137 

U-net originated from Ronneberger in 2015 [31]. The blocks of neural network units of U-net, U-138 
net adopted in this study, and Deep Residual U-net that proposed by Zhang in 2018 are shown in 139 
Figure 5 [31-33]. 140 

 141 

Figure 5. Blocks of neural network units. (a) Neural unit of U-net in this work. (b) Neural unit in Deep 142 

Residual U-net. (c) Neural unit in general U-net. 143 

  144 

It has already been shown in many studies that normalizing input data on different architectures 145 

to accelerate network convergence. The use of the Batch Normalization in deep learning algorithms 146 

makes sustainable education and training operations faster network [34]. So Residual Unet network, 147 

as well as our proposed network of Batch Normalization, is used. We normalize the input layer by 148 

adjusting and scaling the activations. for instance , once we have features from 0 to 1 and a few from 149 

1 to 1000, we should always normalize them to hurry up learning. If the input layer is taking 150 

advantage of it, why not do an equivalent thing also for the values within the hidden layers, that are 151 

changing all the time, and get 10 times or more improvement in the training speed [35,36]. 152 
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 153 

Figure 6. Architecture of the U-net in this study 154 

 155 

The max-pooling layer used in general U-net was replaced by a convolutional layer with a stride of 156 
2 because the convolutional layer with increased stride outperforms the max-pooling with regards 157 
to several image recognition benchmarks as shown in Figure 5 [37]. 158 

To reduce the calculation time cost, we decreased the filter number to 50% of the first. This strategy 159 
was recommended in many studies because it was shown useful for remote-sensing recognition 160 
tasks [38]. 161 

We use a batch size of 25 and a patch size of 256 × 256 pixels for the Unet models. The models were 162 
trained for 50 epochs. We trained the network with a learning rate of 0.01 for all epochs. RMSProb 163 
is used for parameter optimization that is suitable for large datasets. The employed loss function is 164 
cross-entropy. 165 
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2.2.3. Development Environment 166 

In this work, we used the Deep Learning Studio (DLS) and Peltarion as the deep learning 167 
framework [39,40]. DLS is DeepCognition’s web-based software, that designs networks and trains 168 
deep learning algorithms for Windows and Linux. DLS supports deep learning networks for image 169 
recognition tasks. All experimentation and modeling environment tasks are implemented in Deep 170 
Learning Studio Virtual Machine (DLSVM). 171 

The virtual machine is configured with 32 GB of RAM, a 2.30 GHz 2-core Intel(R) Xeon(R) CPU, 172 
and a 1.59 GHz NVIDIA Tesla T4 GPU 16GB DDR6 with 50 GB memory [39,40]. 173 

The data are preprocessed and analyzed in Python using the GDAL, NumPy, pandas, OpenCV, 174 
Scipy, Scikit-image, Scikit-learn, Pillow, MKL, and Tifffile libraries. The deep learning algorithms are 175 
achieved in the Deep Learning Studio (DLS) which is a robust GUI, partially free, and easy-to-use 176 
framework. It can be used in the cloud or on our infrastructure. 177 

3. Results 178 

In this study, we completed 50 epochs for both the U-net model and deep residual U-net to get 179 
the trained building damage recognition model [31,32]. The relation between the cross-entropy loss 180 
and the iteration of epochs is shown in Figure 5. Trend graphs in Figure 7 show that our proposed 181 
method considerably noticeably improves results. Both networks till epoch 15 are close to each other, 182 
and not much difference between them. 183 

 184 

Figure 7. Relation between the loss and the number of epochs during the training. 185 

 Here, the U-net has a much lower omission error (28.1% undamaged, and 39.3% damaged) than 186 

the deep residual U-net (37.7% undamaged, and 47.2% damaged). The overall accuracy of our 187 

proposed approach 69.71 and the overall accuracy of deep residual Unet 62.5%, which is shown the 188 

method is proposed in this paper proves the performance of the network. The Kappa value for Unet 189 

in this paper is 37.7%. 190 

Some buildings were classified incorrectly, because of the orthographic projection characteristic of 191 

the optical remote sensing measurement, the sensor can only record the information on top of each 192 

object, and the damage situation under the roof is not reflected. An example is shown in figure 8 193 

[41,42]. 194 
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 195 

Figure 8. An example of collapsed buildings in the earthquake which incorrectly classified. The image doesn’t 196 

relate to Haiti earthquake. 197 

 198 

The final result of the buildings damage map shown in Figure 9. Although the number of 199 

buildings damaged and safe is almost equal, but about three times the pixels dedicated to undamaged 200 

building more than buildings have been destroyed. The black area relates to parks, slums, and tents 201 

survivors as well as other items that are not within the building kind. 202 

 203 

Figure 9. Final damage Map- The blue colour represents safe buildings, and the red colour represents 204 

damaged buildings. 205 

From the availability of data to achieve the final map takes less than 7 hours that very faster than 206 

the field inspection and this advantage of this approach. 207 
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4. Discussion 208 

This model was demonstrated for mapping the earthquake damage, but the framework also 209 
works for other hazards such as floods, missile attacks, hurricanes, and many natural and unnatural 210 
disasters. To generalize this framework to other tragic event types, the VHR satellite image and 211 
corresponding reference data for different disaster types should be used to training the new model. 212 
The proposed model is a supervised classification model. It can be simply implemented to react to 213 
future hazards after these models are well developed. 214 

The role of building footmark data is to create training data labels. It is considering that the label 215 
of land covers the jungle, water, etc. The non-built-up regions are also available, and we can train a 216 
new model that does not depend on the building footprint data. From this aspect, the proposed 217 
framework does not depend on building footprint data and is a generalized framework. 218 

5. Conclusions  219 

Dominance image processing and artificial intelligence in the field of images of remote sensing, 220 
especially with the development of algorithms for deep learning, continually grow, but unlike other 221 
issues that improved very significantly, but in remote sensing a little performance increased, so still, 222 
need to research and further studies of the potential of the computer world in the field of geographical 223 
sciences and image processing used. 224 
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