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Abstract: High-fat diet (HFD) is a major problem causing neuronal damage. However, the 

mechanisms and potential therapeutic targets have not been evaluated yet. Thymoquinone (TQ) 

could regulate oxidative stress and inflammatory process. Hence, the present study elucidated the 

significant role of TQ on oxidative stress, inflammation as well as morphological changes in the 

cerebellum of rats with HFD. The present study establishes the role of TQ on oxidative stress, anti-

inflammatory process and morphological changes in the cerebellum following high-fat diet 

supplementation in rats. Rats were divided into three groups as (1) Control, (2) saturated HFD for 

eight weeks and (3) HFD supplementation (4 weeks) followed TQ 300 mg/kg/day treated (4 weeks). 

After treatment, body weight and serum cholesterol profile were measured. Also, blood samples 

were collected to measure oxidative stress markers glutathione (GSH), superoxide dismutase (SOD) 

and inflammatory cytokines. Furthermore, neuronal morphological changes were also observed in 

the cerebellum of the rats. HFD rats show higher in body weight as compared with the control 

group. TQ treatment significantly (p < 0.05) lowers the body weight with significant (p < 0.05) 

reduction in cholesterol, triglycerides, high-density lipoprotein (HDL) and low-density lipoprotein 

(LDL). The anti-oxidative enzymes significantly reduced in HFD rats as compared with the control 

group. Surprisingly, treatment with TQ could improve the level of GSH and SOD. TQ treatment 

significantly (p < 0.05) reduced the inflammatory markers as compared with HFD alone. The 

histological study revealed that neuronal damage was prevented in the cerebellum following 

treatment of TQ. TQ treatment minimizes neuronal damage as well as reduces inflammation and 

improves anti-oxidant enzymes. 
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1. Introduction 

Various chronic diseases, such as diabetes, cardiovascular diseases, and cancer, which plague 

our current times are majorly influenced by obesity and overweight [1]. In addition, researchers have 

noted that the risk of neurodegenerative diseases escalates with obesity [2]. Elevated commonness of 

neurodegenerative disorders could have a huge influence on the life conditions of the patients. 

Several studies have started exploring the pathophysiology and prevention of neurodegenerative 

diseases, even though their mechanisms have not been clarified yet. Moreover, a distinct parallel 

relationship between the developments in neurological disease such as obesity which has been 
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indicated by significant research [3]. Afflictions to the brain are linked with metabolic alterations 

generated in obesity. These afflictions could prompt neuronal death, either by apoptosis or cell 

necrosis, in addition to changes in the neuron’s synaptic plasticity [4,5]. Obesity now is ranked as the 

fifth leading cause of death world-wide, and its global spread is alarming [6]. 

The reason to identifying overweight and obesity as liable aspects for the progress of 

Alzheimer’s disease (AD) and Parkinson’s disease (PD), is the high probability for obese patients to 

develop type 2 diabetes mellitus (DM2) [7], which in turn is linked to neurodegenerative diseases [2]. 

This fact is also explained by the existing relation amidst obesity and insulin resistance that has a 

crucial part in the development of dementia [3,8,9]. Inflated levels of pro-inflammatory cytokines 

elevate inflammation that consecutively induces a cognitive deficiency [10,11]. 

The abundant increase of visceral adipose tissue is affiliated with obesity, specifically in 

adipocyte size, and this elevation extremely impacts the adipose tissue performance [5,12]. White 

adipose tissue excretes an assortment of pro-inflammatory and anti-inflammatory factors [12], among 

them are the adipokines (adiponectin and leptin) and cytokines [5,13,14]. Human metabolic 

syndrome can be modeled by metabolic disorders and diet-induced obesity in rodents, which can be 

caused by the consumption of HFD [14,15]. 

Recently, herbal medicine has been broadly used in the treatment of many neurodegenerative 

disorders. Some of the many advantages to herbal remedies are that they exert minimal side effects, 

are widely available and easy to administrate [16,17]. The scientific name of Nigella sativa (NS) is an 

annual plant which is known as black seed or cumin. The plant belongs to Ranunculaceae family 

[18,19]. NS have been shown to have anti-inflammatory, anti-oxidative and neuroprotective effects 

[18]. Extracts of NS have been noted to shield the frontal cortex and brain stem from toluene-induced 

degeneration in rats [19,20]. Research has exhibited that TQ, the active compound of NS, has 

acetylcholinesterase inhibitory effect and shields cultured rat primary neurons against Aβ-induced 

neurotoxicity [19]. TQ has significant therapeutic properties such as reduction in inflammatory 

mediators and exhibited anti-inflammatory effects on encephalomyelitis [11]. Oxidative stress is 

triggered by free radicals. This phenomena is evidently known to be increased by obesity [21]. The 

induced release of abundant amounts of reactive oxygen species (ROS) and pro-inflammatory 

cytokines have been implicated throughout chronic activation of the microglial cells, in several 

neurodegenerative diseases such as Alzheimer’s disease [22,23]. While treatment with TQ 

demonstrated an immense notable decline in malondialdehyde (MDA) level, this could be due to 

anti-oxidative properties [18]. Therefore, we hypothesized that TQ may have a significant impact on 

neuronal morphological changes in cerebellum through anti-oxidative enzymes and anti-

inflammatory mediators in rats following supplementation with HFD. 

2. Materials and Methods 

2.1. Animals 

Adult Albino Wistar rats (n = 15) (6–8 weeks), weighing from 160–200 g were acquired from the 

Animal Experimental Unit of King Fahd Centre for Medical Research (KFMRC), King Abdulaziz 

University, Jeddah, Saudi Arabia. Polypropylene cages (size: 32 cm X 24 cm X 16 cm) were used to 

keep the rats. Rat bedding with paddy was used and cleaned at three-day intervals. Pellet diet, water, 

12 h of light cycle was supplied throughout the experimental period. The rats can access food and 

water freely in a preserved controlled facility in temperature (24 °C ± 1 °C) with 55% ± 10% humidity. 

The experiment was designed with correspondence to the codes of the guidelines for Ethical Conduct 

in the Care and Use of Animals; experimental conduct and handling were authorized via the Animal 

Ethics division within the Ethics Committee of Biomedical Research-Faculty of medicine at King 

Abdul Aziz University, ethical approval number (186-18 [HA-02-J-008]). The experiment was 

executed in consensus with the guidelines of dealing with experimental animals that are followed in 

KFMRC, KAU, Jeddah, Saudi Arabia, which are in accordance with the Canadian Council for animal 

safety and health care. TQ was extracted from NS in the Department of Natural Products and 
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Alternative Medicine, Faculty of Pharmacy, KAU, Jeddah. The TQ concentration of NS was analyzed 

by High-performance liquid chromatography (HPLC). 

2.2. Experimental Groups 

A total of 15 animals were divided into three groups; (1) Control (n = 5), (2) High fat diet (HFD) 

(n = 5) (6 mg/day) for 8 weeks and (3) High fat diet (HFD) (n = 5) for 4 weeks with TQ (300 mg/kg/day) 

for 4 weeks. For the induction of obesity in rats, different kinds of diets had been used, control chow 

diet and HFD: (a) Regular rodent chow diet: the assembled diet was in accordance to [16]. The ratio 

of compounds in a regulated rat diet is 65% CHO (60% starch and 5% sucrose), 20% protein, 5% fat, 

5% minerals and vitamins, and 5% fibers. This diet has a metabolic efficiency of 2813 kcal/kg with 8% 

coming out of fat. (b) The saturated HFD: the diet is formed of 20% saturated fat (butter) obtained 

from local retail in Jeddah, 2% cholesterol and 0.5% bile acid salts. (c) The high saturated fat diet + 

the TQ Nigella seeds extract: The TQ dose of (300 mg/kg/day) was prepared with distilled water 

administered by intragastric intubation [20]. The seeds were collected from the local retailer 

(Kingdom of Kif factory for packing foodstuffs, 63298), Jeddah, KSA. 

2.3. Measurement of Inflammatory Markers 

Rat Cytokine/Chemokine (Cat. No. RECYTMAG-65K, USA) was used to measure the levels of 

IL-1β, IL-6, TNF-α in serum according to manufacturer’s protocol. Luminex 200 machine and 

Milliplex Analyst software were used for data analysis, at the Neuroscience Unit in KAUH. 

2.4. Morphological Changes 

Following HFD supplementation, rats had undergone cardiovascular perfusion with PBS and 

paraformaldehyde according to the procedure of [24]. The brain was harvested and used for tissue 

processing. Following fixation, coronal tissue sections were cut. Then, Haematoxylin and eosin 

staining was performed by immersing the glass slides in xylene and gradient of alcohol in order to 

deparaffinize and rehydrate the sections. The procedure was done in an automatic tissue stainer. 

Finally, the slides were covered with a thin glass cover slip using a mounting medium and studied 

under light microscope. 

3. Results 

3.1. HFD on Body Weight and Cholesterol Profile 

To evaluate the effect of HFD on the body weight of rats and their serum cholesterol profile. The 

rats supplemented for eight weeks with HFD showed a significant increase in body weight (p < 0.05) 

but treatment with TQ with HFD supplementation significantly (p < 0.05) lowered the body weight 

(Figure 1 (A)). Before the supplementation of the HFD, there was no significant body weight 

difference found among all groups. It indicates that the increase of the body weight depends upon 

the supplementation of HFD. Followed by weighting the body weight, blood collected from rat 

orbital sinus and carried out serum cholesterol profile. The results in (Figure 1 (B)) demonstrated the 

effect of TQ on lipid profile such as cholesterol, triglycerides, HDL and LDL. The cholesterol level 

was significantly (p < 0.05) elevated following HFD supplementation as compared with the control 

group, whereas four weeks treatment with TQ significantly reduced the level of cholesterol. The 

cholesterol level was very high as compared with triglycerides, HDL and LDL in the HFD 

supplementation group. The level of triglycerides and LDL were significantly (p < 0.05) higher in 

HFD animals but HDL was increased slightly as compared with those on a normal diet. The body 

weight and cholesterol were regulated by the TQ treatment and reduced significantly (p < 0.05) 

(Figure 1 (B)). 
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3.2. HFD on Anti-Oxidative Enzymes 

After investigating the body weight and cholesterol profile, the anti-oxidative enzymes have 

been analyzed. The data show that the glutathione (GSH) (Figure 2 (A)) level was significantly (p < 

0.05) reduced following HFD supplementation whereas the level of GSH significantly increased 

following treatment with TQ. Interestingly, Malondialdehyde (MDA) (Figure 2 (B)) level was 

significantly lowered in the HFD supplemented groups as compared with the control group animals. 

But after treatment with TQ, the amount of MDA reached the level of the control. HFD 

supplementation did not have an effect on Superoxide dismutase (SOD) (Figure 2 (C)) levels as in 

GSH and MDA. HFD results in significant reduction in SOD as compared with the control group. At 

the same time, treatment with TQ significantly increased the level of SOD in the treated group (p = 

0.001). 

3.3. HFD on Inflammatory Markers 

After analyzing the antioxidant markers, four inflammatory cytokines such as IL-1β, IL-6, IL-10 

and TNF α were analyzed from rat serum. Results show consistent changes across all four markers. 

The data show that IL-1β (Figure 3 (A)) increased significantly (p < 0.05) in the HFD but not in 

the control animals, whereas TQ treated groups showed significantly reduced IL-1β level. In the HFD 

supplemental groups, the IL6 (Figure 3 (B)) was extremely higher compared to the control, but was 

reduced following TQ treatment. IL-10 (Figure 3 (C)) and TNF-α (Figure 3 (D)) markers also increased 

significantly in the HFD group but significantly reduced in the TQ treatment group (p < 0.05). The 

four markers confirmed the inflammation after supplementing with HFD. 
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3.4. HFD on Neuronal Morphology in the Cerebellum 

The neuronal morphological changes were performed using H&E staining after biochemical 

analysis. The granular layers and Purkinje cells were intact, i.e., the round shape of the cell 

membrane, the visible nucleus and axons in the control cells (Figure 4 (A)). The group 

supplementation with HFD shows non-visible cell membrane and nucleus irregular shapes and 

restructure of axons (Figure 4 (B)). However, after treatment with TQ, neuronal damage in granular 

and Purkinje cells in the cerebellum were minimized (Figure 4 (C)). 

 

 

3.5. HFD on Neuronal Morphology in the Cerebellum 

The neuronal morphological changes were performed using H&E staining after biochemical 

analysis. Purkinje cells were arranged in one row and appeared pyriform in shape. The granular layer 
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showed tightly packed small, rounded cells (Figure 4.A). The group supplementation with HFD 

showed Purkinje cells with deep acidophilic cytoplasm and deeply stained pyknotic nuclei. Notice 

marked vacuolation within the molecular cell layer and most of the Granular layers appeared with 

marked dilated spaces between the intact granular cells. (Figure 4B). However, after treatment with 

TQ, neuronal damage in granular and Purkinje cells in the cerebellum were minimized (Figure 4C). 

 

Figure 4. Group I (A): The Purkinje with apical dendrites (black ↑) in one row, pale stained nuclei, and prominent 

nucleoli. Notice the tightly packed granule cells (Gr) and cerebellar islands between them. Group II (B): Purkinje 

cells appeared with deep acidophilic cytoplasm and deeply stained pyknotic nuclei (↑). Notice vacuolation 

within the nearby molecular layer (red ↑). Granular layers (Gr) showed marked spaces between the granular 

cells. Group III (C): apparently normal Purkinje cells (black ↑) and granular cells (Gr) nearly to the control. 

4. Discussion 

In the present study, we demonstrate that a high fat diet causes obesity in terms of increase in 

body weight as well as high cholesterol level leading to oxidative stress by minimizing the anti-

oxidant enzymes levels and elevating the inflammatory cytokines levels which ultimately provoke 

neuronal damage in the cerebellum of rats. However, TQ has been able to reduce body weight, 

cholesterol levels, improve antioxidant enzymes, and mitigate inflammatory cytokines along with 

cerebellum neuroprotection. Based on previous studies, it was stated that high intake of HFD 

significantly causes obesity. Obesity is one of the risk factors for cognitive functions in terms of 

learning and memory deficits and is associated with symptoms of AD where HFD potentiates the 

onset of microglial activation, the main source of neuroinflammation [25]. A study by [26] revealed 

that hypercholesterolemia might be a high risk factor for developing AD. In line with these results, 

another study confirmed that HFD affects memory and causes tau pathology in female offspring 

during gestation and lactation [27]. Mostly, clinical complications of obesity lead to learning and 

memory deficits in obese patients [28]. Note that HFD plays a major role in controlling brain functions 

and behaviors in both humans and animals. It is therefore necessary to find a valuable therapeutic 

approach to reduce this burden by using herbal products. It was therefore necessary to study the role 

of TQ in rat cerebellum on body weight, cholesterol profile, anti-oxidant enzymes, anti-inflammation 

and morphological changes. Interestingly, the results of this study show significant correlation 

between total body weight gain and average daily intake. Rats fed with HFD increased cholesterol 

levels for eight weeks, resulting in higher serum TC, HDL, and LDL levels. It is suggested that there 

is correlation between weight gain and cholesterol profile. The reason for increasing the cholesterol 
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level in the circulating blood is that the body cannot metabolize lipids after HFD supplementation 

[29]. In agreement with our current results, [31] reported a significant increase in total triglyceride 

levels following HFD intake after two weeks. Surprisingly, [32] reported that HFD-fed male mice 

respond faster to high-fat diet and gain weight than females. It has been stated that long-term food 

intake could increase body weight [33]. In the present study, treatment with TQ significantly reduced 

body weight along with decreased serum cholesterol profile such as TC, HDL, and LDL. In an 

agreement with previous studies, TQ treatment could decrease serum levels of LDL, TC and HDL 

[34]. The results show consistent changes across all four markers [35]. It is interesting that TQ plays 

a major role in regulating body weight and cholesterol. In our perceptive, high cholesterol levels can 

trigger oxidative stress and then lead to a reduction in antioxidant enzymes. We also conducted 

analyzes of anti-oxidant enzymes such as GSH and SOD in the present study. 

In fact, hypercholesterolemia may lead to increased reactive oxygen species (ROS) which may 

cause cytotoxic effect by reducing amount of anti-oxidative enzymes [36]. The present results 

suggested that HFD rats show significant reduction in GSH and SOD. In the research line, defense 

mechanisms of the glutathione pathway significantly altered in HFD as reduced in GSH and SOD. In 

the line of research, defense mechanisms of glutathione pathway significantly altered in HFD as 

reduced in GSH and SOD [37]. It was also suggested that early upregulation of genes involved in the 

production of ROS in adipose tissue causes insufficient production of GPx in the liver [38]. The 

reduction of the anti-oxidant enzymes may lead to microglia activation or neuronal damage in the 

central nervous system. Treatment with TQ for four weeks could increase the level of GSH and SOD 

as compared with HFD supplementation group. It has been reported that TQ possess strong 

antioxidant properties and scavenging free-radical production [39]. Based on previous studies, high 

cholesterol may induce inflammation cytokines in blood serum after intake of HFD [39]. We have 

also studied in our experiments serum inflammatory markers (IL-1β, IL-6, IL-10 and TNF-α). 

Consumption of high fat diets and calories seems to be a key factor in obesity [40]. However, the 

mechanisms underlying the triggering of obesity inflammation have not been elucidated. Reference 

[41] reported that HFD-induced obesity is closely related to chronic inflammation characterized by 

activation of inflammatory signaling pathways. These inflammatory signaling pathways are 

activated by the innate immune response of serum cholesterol and fatty acids [42]. The results of the 

inflammatory markers showed significant increase in the HFD supplementation group. The levels of 

inflammatory cytokines elevated in HFD animals. These data are supported by [43]; his study found 

that the levels of IL-1β and IL-6 increased. Consistent evidence reported by [44] shows that the oral 

administration of TQ significantly reduces the levels of different inflammatory mediators. It could be 

suggested that one of the crucial factors to trigger the inflammation is serum cholesterol and oxidative 

stress. 

Numerous reports suggested the anti-inflammatory activity of TQ [45], [46]. TQ mediates anti-

inflammatory activity through heme oxygenase-1 (HO-1), inhibits toll-like receptor 4 and reduces the 

level of pro-inflammatory cytokines. It displays anti-inflammatory activity by inhibiting 

phosphatidylinositol 3-kinase phosphorylation and increased AMPK [47]. The possible inflammation 

factor is cyclooxygenase [47]. The process of inflammatory response is considered as a protective role 

in the biological processes which are regulated by endogenous mediators to eradicate harmful 

stimuli. Cytokines and chemokines are the most common inflammatory mediators in physiological 

functions. Macrophages and neutrophils are major cells that produce inflammatory cytokines in 

injured tissue [48]. In addition, prostaglandins (PGs) biosynthesis and cyclooxygenase (COX) enzyme 

are critically organized in inflammatory processes [49]. In the present study, inflammatory cytokines 

increased after supplementation with HFD but reduced the level of cytokines after treatment with 

TQ. It could be possible for TQ to regulate cyclooxygenase activity. The study of [47] reported that 

TQ inhibits COX-2 and NF-kB induction. Previous study supported TQ’s ability to suppress COX-2 

and reduce inflammation [50]. In fact, nitric oxide (NO) generated by inducible nitric oxide synthase 

(iNOS) which plays a major role in the inflammation process [51]. NO also considers free radicals 

that cause tissue damage through oxidative processes [52]. TQ is believed to be able to influence NO 

to reduce inflammatory cytokines. Further study supported TQ inhibiting NF-kappaB and NO 
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activation [44]. Consistent with this finding, [53] reported that TQ inhibited NO production by 

reducing the expression of iNOS to reveal its anti-inflammatory response. It has been suggested that 

by inhibiting COX, NO and NF-kappaB, TQ has strong anti-inflammatory potential. While TQ 

mitigates cholesterol levels, oxidative stress, and inflammatory cytokines, we are very interested in 

investigating neuronal morphological changes in the cerebellum. 

The morphological changes were studied in the cerebellum, followed by the biochemical assay. 

Eight weeks of HFD rat supplement show neuronal damage in the granular layers and Purkinje cells, 

while TQ-treated neuronal damage in the cerebellum may be reduced. Consistent evidence suggests 

that patients with clinical obesity showed reduction and enlargement of the frontal lobe in both gray 

and white matters [54]. Increased body mass index is also associated with decreased brain volume 

[55]. The mechanisms underlying neuronal damage mediation are considered oxidative damage and 

inflammation [56]. The oxidative damage is defined as damage that occurs during oxidative stress on 

biomolecules. Oxidative stress is a process in which the imbalance between ROS production and 

reactive nitrogen species and antioxidant enzymes and their contribution to pathogenesis has been 

widely studied [57]. The mechanisms underlying oxidative damage in obesity brain are still poorly 

understood, although many experiments have been reported in humans and animals [43,58]. Based 

on the previous studies [59], TQ may reduce neuronal damage by inhibiting kinase-regulating 

apoptosis signal1 (ASK1) that triggered pathways of JNK and p38 MAPK. Oxidative stress and 

inflammatory cytokines like TNF-α are regulated by these pathways. To understand how TQ 

prevents neuronal damage, these pathways need to be studied in the future. 

Under ROS overproduction, possibly due to obesity-induced inflammation, someone would 

expect an increase of antioxidant enzymes to counteract ROS overproduction. This did not happen 

in HFD rats, but TQ reversed this phenomenon. It can be argued that the body mass influences ROS 

production. The decreased body weight of the TQ treated group could, therefore, be associated with 

a decreased level of oxidative stress markers. This is consistent with what was discovered by Roberta 

et al., 2017, that changes in levels of oxidative stress markers analyzed after bariatric surgery are 

correlated with body mass affecting reactive oxygen species production [60]. 

5. Conclusion 

Thymoquinoneon controls the body weight, decrease the levels of the cholesterol profile, 

increase the level of anti-oxidant enzymes, mitigate inflammatory cytokines and prevent neuronal 

damage following supplementation with high fat diet. We could suggest that TQ could be one of the 

therapeutic approaches to improve brain functions and behaviors in obese or overweight people 

based on the present findings. 

Conflicts of Interest: The author declares that they have no competing interests. 
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