

Antibacterial activity of marine-derived chitosan and plant-derived cajeput oil as loaded blended films in *Staphylococcus aureus* and *Pseudomonas aeruginosa*enriched settings

Joana C. Antunes, Tânia D. Tavares, Natália C. Homem, Marta A. Teixeira, M. Teresa P. Amorim, Helena P. Felgueiras joana.antunes@2c2t.uminho.pt

1st International Electronic Conference on Biomolecules: Natural and Bio-Inspired Therapeutics for Human Diseases 1-13th December 2020

Infected wounds

Bacteria are primarily responsible for diabetic foot ulcer (DFU)'s infections, being *S. aureus* the most common bacteria isolated (46.4%), followed by *P. aeruginosa* (22.8%)

S. aureus is a Gram-positive, commensal bacterium

P. aeruginosa is a Gram-negative, invasive bacterium

The increased resistance of bacteria against antibiotics

serious concerns about DFU therapeutic strategies

Bio-based treatments with quick bactericidal action
and low tendency to induce resistance are greatly needed.

Antibacterial CS

It is suggested that the **antimicrobial activity** of the marine-derived polysaccharide CS results from its cationic nature

Antimicrobial mechanisms

- Electrostatic interaction between positively charged R-NH₃⁺ sites and negatively charged microbial outer cellular components and/or cellular membrane leads to cellular impermeability (inhibiting growth) or cellular lysis (killing bacteria). CS internalization and interaction with cytoplasmic constituents may also occur
- Chelation of metals, suppression of spore elements and binding to essential nutrients to microbial growth interfere with their growth and may contribute to their death

CS's antimicrobial activity is **influenced** by **various intrinsic and extrinsic factors**

CS itself (type, Mw, DA, viscosity, solvent and concentration) environmental conditions (test strain, its physiological state and the bacterial culture medium, pH, temperature, ionic strength, metal ions)

Antibacterial CJO

Essential oils (EOs):

- aromatic, volatile, lipophilic biomolecules, extracted from regions of plants (e.g. flowers, leaves, twigs, bark, wood, fruits, etc.)
- formed of complex mixtures of hydrophobic molecules, including thymol, carvacrol and eugenol (among others), which exhibit a broad spectrum of antimicrobial activity against bacteria, fungi, and viruses
- potential to replace antibiotics due to their inherent and strong antiinflammatory, antiseptic, analgesic, spasmolytic, anesthetic, and antioxidative properties

Chitosan (CS) and Poly (vinyl alcohol) (PVA)

Natural and crystalline polymer Biocompatible and biodegradable Film-forming High viscosity Antibacterial and antifungal properties Ability to absorb exudates

Food and Drug Administration (FDA)-approved as a wound dressing material (topical intended use)

Poly (vinyl alcohol) Poly (vinyl acetate)

Synthetic and semi-crystalline polymer Biocompatible and biodegradable Film-forming

Good mechanical properties: flexibility and swelling capability in aqueous environments Water-soluble

Multiple FDA-approved medical uses, in the form of transdermal patches, jellies, oral tablets, ophthalmic preparations, intradermal patches and sutures, among others

- good capacity to form intermolecular hydrogen bonds
- readily forms hydrogen bonds due to a large number of hydroxyl groups

Increase hydrophilicity, improve mechanical properties

Improve stability in aqueous environments

Main Applications:

Food packaging, controlled release of biomolecules, wound dressing, tissue engineering, membrane bioreactors, pervaporation, reverse osmosis, dye removal, fuel cells

Solvent Casting + Phase Inversion

adapted from HP Felgueiras *et al.*, J Appl Polym Sci (2019) doi: 10.1002/app.43626 J. Appl. Polym. Sci. 2018, doi: 10.1002/APP.46188

Solvent Casting + Phase Inversion

Table. Practical numbers required to build tested CS/CJO/PVA blended films, specifically CJO loading amount (in μ L), mass (g) and volume (mL) of polymer solutions for each case, total mass percent (%m/V), total volume (mL) and selected CS/PVA mass ratios.

	EO		CS solution		PVA solution		Total % w/)/)/ (ml)	CC /D)/A mass ratios
	m (mg)	V (μL)	m _{cs} (g)	V (mL)	m _{PVA} (g)	V (mL)		v _{Total} (mL)	CS/PVA mass ratios
CS	-	-	3.51	39	-	-	9%	39	100/0
PVA	-	-	-	-	3.51	39			0/100
CS/PVA	-	-	1.053	26	2.457	13			
CS/PVA/CJO 1%	35.1	39.2							30/70
CS/PVA/CJO 10%	351	392							

Characterization of CS/CJOPVA films

resulted in

increased film thickness up to 124 (1% CJO) or 158% (10% CJO), overall water retention cap<mark>acity,</mark> and porosity

suggesting

Polymer chain rearrangements and EO entrapment inside the matrix

Characterization of CS/CJO/PVA films

CS/CLO/PVA film:

Similar thermal-induced behaviour than unloaded films No peaks shifts are detected

Neglectable EO influence on film's thermal properties

Characterization of CS/CJO/PVA films

CS/CLO/PVA film:

Peaks of both polymers are present <u>suggesting</u> No new peaks are formed Polymers blend Hydrogen bond formation

Neglectable EO influence on film's chemical composition

Antibacterial testing

CS/CLO/PVA film:

S. aureus: the most effective after 6h with 10% EO

P. aeruginosa: 10% CJO led to an increasingly bactericidal trend, clear after 2h of contact *S. aureus:* quickest AM action within 1h of incubation

CS film:

P. aeruginosa: complete bacterial elimination in 1h, effect that endured until tested 24h

Antibacterial testing

Reinforced antibacterial action when CJO is added to the CS-based films ^{vation}

10% CJO led to an increasingly bactericidal trend, clear after 2h of contact

complete bacterial elimination in 1h, effect that endured until tested 24h

Conclusions and Future Work

- CS/PVA blended films were successfully built;
- Both CS and CJO show antibacterial activity against S. aureus and P. aeruginosa;

Felgueiras, HP et al., Biomolecules 2020, 10(8), 1

- CJO was successfully incorporated in the CS/PVA films at 1 and 10%wt;
- CJO-loaded CS/PVA films showed evidently bactericidal effects following 2h of direct contact with the bacteria, being significantly more efficient than unloaded films.
- Films with 100% CS were particularly more effective than 10% CJO-loaded films against *P. aeruginosa*, by completely eradicating it during the first hour of incubation.

Future work will be directed towards a balance between AM action of CS and its mechanical hindrance after processing, together with the combination with CJO to an intensified antimicrobial profile against both bacteria.

Acknowledgments

Authors acknowledge

Ângela Silva for assistance during data acquisition

Dr. Andrea Zille for scientific guidance

PEPTEX Project:

Electrospun polymeric wound dressings functionalized with Tiger 17 for an improved antimicrobial protection and faster tissue regeneration in pressure ulcers

> P.I. Doctor Helena P. Felgueiras Co-P.I. Professor M. Teresa P. Amorim PTDC/CTM-TEX/28074/2017

> > for funding

Authors also acknowledge project UID/CTM/00264/2020 of Centre for Textile Science and Technology (2C2T), funded by national funds through FCT/MCTES

