An Experimental study exploring Box-Behnken Design for Optimal **Extraction of Phenolics from** *Olea europaea* leaves

Shadma Wahab¹, Manal Asiri¹, Manal Magram¹, Lama Shara¹, Lujain Saeed¹

¹Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia.

Background

- Olea europea is commonly known as Zaytoun in Arabic. Arabian Peninsula is famous for its intake of olives with food and it is well known for its nutritional and antioxidant benefits.
- The main constituents of the olive plant are oleuropein, oleoside and dimethyl oleuropein and flavonoids, phenolic compounds, such as tyrosol and caffeic acid¹.
- Extraction method plays a critical role in the study of medicinal plants. Microwave-assisted extraction (MAE) is an advanced extraction approach that was formed to reduce the extraction time and to increase yields with minimal consumption of solvents².

Methodology

Design Layout Column Info Pop-Out View 🔻				Dependent respon			
rigation Pane Design (Actual)	Std	Run	Factor 1 A:Time min	Factor 2 B:Power W	Factor 3 C:Solid/Liquid g/40ml	Response 1 Extraction yield. (%)	Response 2 TPC mgGAE/gm
-1 Information	12	1	10	30	1.5		
Notes	6	2	15	20	0.5		
Summary	8	3	15	20	1.5		
Graph Columns	9	4	10	10	0.5		
Evaluation	1	5	5	10	1		
Analysis	5	6	5	20	0.5		
R1:TPC (Empty)	13	7	10	20	1		
R2:TAA (Empty)	11	8	10	10	1.5		
	4	9	15	30	1		Sten-3
Numerical	2	10	15	10	1		Juch-2
Crashiel	10	11	10	30	0.5		
Graphical	7	12	5	20	1.5		
Post Analysis Point Prediction	3	13	5	30	1		

Result and discussion

Figure 3: Three-dimensional response surfaces plots showing effect of solid/liquid ratio, time of extraction (min) and power (W) using microwave assisted extraction for total phenolic content and extraction yield.

Figure 1: Microwave-assisted extraction Mechanism

Research Problem

- ✓ Currently, process optimization with **response surface** methodology for extraction parameters in herbal infusions has drawn consideration to maximize antioxidant phenolic compounds³.
- ✓ *Olea europaea* is reported to possess wide area of pharmacological and therapeutic attributes. There are many reported studies on the health influences of olive leaves, still, there are limited research on the efficient extraction method.

Aim & Objectives

Aim: Exploration of Box-Behnken Design for Optimal Extraction of Phenolics from Olea europaea leaves.

Specific objectives:

Microwave-assisted extraction (MAE)

 \checkmark Based on the generated experimental values, all the 13 extracts were made with the help of MAE.

✓ Each extract was evaporated and % yield of recovered dried extract was calculated with the formula:

Yield (%)= (W1/W2) * 100

where W1 = weight of the extract after evaporation, and W2 = weight of the plant

Result and discussion

Table 1: Length and width Ratio of olive leaves

Characters (Measurements in cm scale)							
Leaf-length	Leaf-width	Length/ width ratio					
6.8	1.5	4.5					
5.9	2	2.95					
5	1	5					
6	1.5	4					
6.4	1.7	3.8					
5.7	1.5	3.8					
6.8	1.4	4.8					
	Characters () Leaf-length 6.8 5.9 5 6 6 6.4 5.7 6.8	Characters (Weasurements iLeaf-lengthLeaf-width6.81.55.925161.56.41.75.71.56.81.4					

Optimization of MAE Parameters

 \checkmark The optimal conditions for the aqueous extraction of phenolic compounds from olive leaves were proposed to be at 10W power for 10 min time at a sample-to-solvent ratio of 1.5g/40mL solvent.

✓Power and ratio were shown to have a positive influence on the extraction of TPC and yield of biomass.

✓A quadratic regression model the was most model appropriate for understanding the contribution of maximum yield of biomass and TPC.

Observation and Conclusion

✓ To prepare the aqueous extracts of leaves of *Olea europaea* using the Box-Behnken Design (BBD) with microwave assisted extraction.

✓ Estimation of total phenolic compound in each extract. ✓MAE method development to obtain the highest extraction yield and Total Phenolic content from *Olea europaea* leaves.

Materials

Table 2: Ranges of Independent parameters, % Yield and Total Phenolic content of olive leaves

Run	Time	Power	Solid/ Liquid	%Yeild	TPC (Total phenolic content (mg GAE/g DW)
1	15	20	0.5	24	64.1 ± 1.7
2	10	30	0.5	26	28.76 ± 1.52
3	15	10	1	16	107.76 ± 1.15
4	5	10	1	26	51.76 ± 0.57
5	15	20	1.5	26	100.43 ± 2.08
6	15	30	1	28	90.76 ± 0.57
7	5	30	1	33	199.43 ± 2.51
8	10	20	1	24.6	102.76 ± 1.15
9	5	20	0.5	16	192.1 ± 3.60
10	5	20	1.5	33	157.77 ± 1.14
11	10	10	0.5	48	32.1 ± 4.35
12	10	10	1.5	24.6	221.43 ± 2.3
13	10	30	1.5	37	121.43 ± 0.57

- ✓ This study attempted to find the most effective conditions of MAE through Box-Behnken design for high TPC recovery by considering water as green solvent.
- ✓ Results showed that the obtained % yield ranges from 16 to 48 %, range of TPC was found to be from 28.76 to 221.43 mg GAE/g DW.
- ✓ The significance of regression coefficients was statistically examined by analysis of variance (ANOVA). It was analysed that the lack of fit value of the quadratic model was insignificant but the model was significantly fitted.
- \checkmark So the second order polynomial model could be used to optimize extraction of phenolic compounds from olive leaves
- ✓ This study provides ideas with scientific basis of utilization of olive leaves as a rich source of phenolic compounds to be extracted using MAE.

Future Plan

✓ Optimization of total flavonoid content and antioxidant activity of olive leaves through Microwave-assisted extraction.

✓ Detection of major bioactive compounds in the optimized extract of *Olea europea* leaves through GC–MS analysis.

References

Acknowledgement

Shadma Wahab and co-authors declare sincere gratitude toward King Khalid University, Abha, Saudi Arabia, for providing the opportunity to carry out research.

The predicted Second order Polynomial equation explaining the effect of each factor on the response

Total Phenolic Content = + 102.76 - 27.45 A + 3.81 B + 33.52 C -41.17 AB + 22..27AC - 24.95 BC + 16.69 A² - 7.01B² + 4.54C²

Yield = + 22.31 - 1.87 A + 1.22 B + 0.8975 C + 1.25 AB - 3.52 AC + 8.44 BC 2.80 A² + 6.24 B² + 5.01 C²

- ✓ Armutcu, F., Akyol, S., Hasgul R., Yigitoglu M., 2011, 'Biological Effects and the Medical Usage of Olive Leaves, J Complement Med Drug Discov. Vol 1, pp150-159.
- ✓ Oluwaseun R. A, Abdurahman,N.H., Ukaegbu,C.I., & Kabbashi, N.A., 2019, 'Extraction and characterization of bioactive compounds in *Vernonia amygdalina* leaf ethanolic extract comparing Soxhlet and microwave assisted extraction techniques, Journal of Taibah University for *Science*, vol 13 no. 1, pp 414-422.

The 1st International Electronic Conference on Biomolecules NATURAL AND BIO-INSPIRED THERAPEUTICS FOR HUMAN DISEASES

01-13 DECEMBER 2020

