Comparative and functional screening of three species traditionally used as antidepressants: *Valeriana officinalis* L., *Valeriana jatamansi* Jones ex Roxb. and *Nardostachys jatamansi* (D.Don) DC.

Laura Cornara¹, Gabriele Ambu¹, Domenico Trombetta², Marcella Denaro², Susanna Alloisio³,⁴, Jessica Frigerio⁵, Massimo Labra⁶, Govinda Ghimire⁷, Marco Valussi⁸ and Antonella Smeriglio²,*

¹Department of Earth, Environment and Life Sciences, University of Genova, 16132, Genova, Italy
²Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy; asmeriglio@unime.it
³ETT Spa, via Sestri 37, 16154 Genova, Italy
⁴Institute of Biophysics-CNR, 16149 Genova, Italy
⁵EM2 Ambiente Srl, Piazza della Scienza 2, 20126, Milan, Italy
⁶Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
⁷Nepal Herbs and Herbal Products Association, 44600, Kathmandu, Nepal
⁸European Herbal and Traditional Medicine Practitioners Association (EHTPA), 13815, Norwich, UK
Medicinal and aromatic plants have played a fundamental role, from ancient times to today, because they have been used for many therapeutic purposes all over the world;

Some of these plants contain chemicals with sedative and anxiolytic effects often used in traditional medicine for the treatment of CNS disorders;

Among the most popular herbal medicines used at this purpose there are different species belonging to the Caprifoliaceae family including more than 200 species widespread in Europe, North America and Asia;

The roots of Vo and Nj, because of high commerce, are often fraudulently adulterated with other species;

In addition, confusion about the botanical names of Nj and Vj has been observed, frequently since both the species are known with the same vernacular names, and the authentication of herbal material is made more difficult by the use of dried roots/rhizomes.
The aim of study was to systematically investigate the genetic and botanical features of these plants by DNA barcoding and micromorphological analyses and subsequently, to characterize and compare the chemical composition and neuroactive effects of EOs isolated by steam distillation from root/rhizome of Vo, Vj and Nj.
DNA barcoding studies

In the table are shown declared species, resulted species, origin, collection year and accession numbers deposited in the EMBL Nucleotide Sequence Database (www.ebi.ac.uk/embl).

<table>
<thead>
<tr>
<th>Declared Species</th>
<th>Resulted species</th>
<th>Origin</th>
<th>Collection Year</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. officinalis</td>
<td>V. officinalis</td>
<td>China</td>
<td>2019</td>
<td>LR861814</td>
</tr>
<tr>
<td>V. jatamansi</td>
<td>V. jatamansi</td>
<td>Darchula District, Nepal</td>
<td>2019</td>
<td>LR861815</td>
</tr>
<tr>
<td>N. jatamansi</td>
<td>N. jatamansi</td>
<td>Darchula District, Nepal</td>
<td>2019</td>
<td>LR861816</td>
</tr>
</tbody>
</table>

Each barcode sequence was taxonomically assigned by using BLASTn analysis to the plant species with the nearest matches (maximum identity >99% and query coverage of 100%).

All the samples returned 100% maximum identity
Macro-micro morphological studies

V. officinalis
- Parenchymatous cells with starch grains (20×)
- Starch grains (40×)

V. jatamansi
- Scalariform vessels (20×)
- Starch grains (40×)

N. jatamansi
- Cork cells (10×)
- Fibers and small starch grains (40×)

Dried root/rhizome

Powdered material
Light microscopy after phloroglucinol-HCl staining

- Cortex and stele in an older root
- Parenchymatous cortex contain oil globules
- Collateral vascular bundles circularly arranged
- Suberised cork cells containing many oil globules
- Bundles of sclerenchymatous fibres in red
- Parenchymatous pith showing a characteristic subtriangular-stellate shape, which is enclosed by cork rings

V. officinalis V. jatamansi N. jatamansi
Scanning Electron Microscopy (SEM)

- Epidermis with root hairs and hypodermal layer of the cortex
- Single or composed starch grains (2-6 components)
- TS of rhizome showing vascular bundles circularly arranged
- Epidermis with many root hairs and parenchymatous cells filled with starch grains
- Exoderm and parenchymatous cells filled with single starch or composed grains (2 components)
- TS of rhizome with many vascular bundles surrounding the central pith
- The rhizome is surrounded by many remains of the basal leaves petioles
- Particular of the TS of rhizome showing a multi-layered cork and large bundles of sclerenchymatous fibres

V. officinalis V. jatamansi N. jatamansi
Phytochemical profile of EOs by GC-MS analysis

BACKGROUND

AIM OF WORK AND EXPERIMENTAL DESIGN

RESULTS AND DISCUSSIONS

CONCLUSIONS

- Others
- Oxygenated sesquiterpenes
- Sesquiterpene hydrocarbons
- Oxygenated monoterpenes
- Monoterpene hydrocarbons

N. jatamansi
V. jatamansi
V. officinalis
Phytochemical profile: the most representative compounds

IC n. 39

- Bornyl acetate: 46.90%
- trans-Valerenyl acetate: 13.18%
- Camphene: 13.85%

V. officinalis

IC n. 42

- γ-Gurjunene: 11.88%
- Maaliol: 17.43%
- Calarene: 10.57% Vj, 8.22% Nj

V. jatamansi

IC n. 69

- Valencene: 8.05%
- Jatamansone: 13.96%

N. jatamansi
Agglomerative and two way-hierarchical clustering analyses

Absence
Very low presence
Relevant presence

Chemotaxonomic markers
Patchoulo1 in Vj
Jatamansone in Nj
Trans-valerenyl acetate in Vo
Acetylcholinesterase-inhibition assay

V. officinalis
- IC$_{50}$ 127.30 µg/mL
- (99.30-163.20)

V. jatamansi
- IC$_{50}$ 67.15 µg/mL
- (57.47-78.44)

N. jatamansi
- IC$_{50}$ 246.84 µg/mL
- (191.86-317.58)

Reference compound
Galantamine 7 µg/mL
Changes in the spontaneous electrical activity of *in vitro* cortical neuronal networks in response to Nj, Vj and Vo EOs were recorded by using multielectrode chips assay

- Concentration-dependent decrease in the electrical activity of neuronal networks until the complete loss of activity;
- Nj EO was the most potent in the inhibition of spontaneous activity;
- A slightly lower efficacy, without any statistically significant difference, was obtained with the administration of Vo EO;
- Vj EO induced a decrease of neuronal activity at higher concentrations ($P<0.01$ vs Vo and Nj).

Reference compound

Muscimol

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>MFR IC₅₀</th>
<th>MBR IC₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nj</td>
<td>12.80</td>
<td>11.10</td>
</tr>
<tr>
<td>Vo</td>
<td>16.00</td>
<td>22.20</td>
</tr>
<tr>
<td>Vj</td>
<td>54.40</td>
<td>88.70</td>
</tr>
</tbody>
</table>

Mean firing rate (MFR) Mean burst rate (MBR)

Reference compound

Muscimol

IC₅₀ 0.032 µg/mL (MFR)

IC₅₀ 0.004 µg/mL (MFR)
Conclusions

- Microscopic and DNA barcoding analyses represent a rapid and valid approach for herbal drug identification, allowing discrimination of genera and species;
- These combined with the phytochemical fingerprinting of the EOs are important tools to avoid the adulteration of these herbal drugs and to discriminate between EOs of plants coming from different sites;
- This study demonstrates experimentally, for the first time, the effects on the central nervous system of *V. officinalis*, *V. jatamansi* and *N. jatamansi* EOs by both AChE inhibitory activity and a reconstituted murine neuronal network in vitro;
- This model reduces the number of animals used to a minimum, according to the principles of the 3Rs (Replacement, Reduction and Refinement) and represents an absolute innovation in the pharmacological/toxicological field to investigate the effects of plant complexes on the central nervous system;
- Therefore, our methods can be recommended for the correct identification of herbal drugs and for the evaluation of the effectiveness of EOs in the treatment of nervous disorders.
Special thanks to

Prof. Domenico Trombetta
Dr. Marcella Denaro

Prof. Massimo Labra
Dr. Jessica Frigerio

Dr. Susanna Alloisio

Dr. Govinda Ghimire

Dr. Marco Valussi