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  Abstract: Calcium is a very crucial nutrient for bone development and normal functioning of the 

circulatory system, whereas its deficiency can trigger the development of osteoporosis and rickets. On the 

other hand, Solanum tuberosum L. is one of the most important staple food crops worldwide, being a 

primary component of human diet. Accordingly, using this staple food, this study aims to develop a 

technical itinerary for Ca biofortification of cv. Agria. As such, an itinerary Ca biofortification was 

promoted throughout the respective production cycle. Seven foliar sprays with CaCl2 or, alternatively, 

chelated calcium (Ca EDTA) were used at concentrations of 12 and 24 kg ha−1. The index of Ca 

biofortification and the related interactions with other chemical elements in the tuber were assessed. It was 

found that, relatively to the control, at harvest, Ca content increase 1.07–2.22 fold (maximum levels 

obtained with 12 kg ha−1 Ca-EDTA). Besides, Ca(EDTA) at a concentration of 24 kg ha−1 showed the second 

highest levels in Ca, S and P content, but with CaCl2 was also possible to identify a tendency of increasing 

contents (in Ca, K, S and P) when spraying concentration increased (12 kg ha−1 to 24 kg ha−1). 

Independently of the Ca higher content, dry weight, height, diameter and the colorimetric parameter L of 

tubers did not varied significantly, but minor changes occurred in the colorimetric parameters Chroma and 

Hue. It is concluded that Ca(EDTA) can trigger a more efficient Ca biofortification of Agria potato tubers, 

with additional enrichment of K, S and P. 
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1. Introduction 

After rice, wheat and maize [2–4], Solanum tuberosum L. is one of the most important staple food 

crops worldwide [1]. Potato is a primary component of the human diet [5] and can provide 5–15% of 

dietary calories [6], minerals, vitamins and carbohydrates [7]. It is rich in K, vitamin C and B6 [1] and 

phytochemicals, such as phenolics and carotenoid compounds [8]. Besides, due to the major 

consumption all over the world, enrichment of potato tubers with different minerals, such as 

selenium [9–11] or zinc [12,13] as been carried out [14]. In this context, agronomic biofortification is 

frequently used to increase different minerals content in the edible part of plants, being through foliar 

fertilization, a more faster and cost-effetive way [15]. 
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Some studies with apples [16], peach [17], potato [18] and some vegetables [19] showed a higher 

Ca content after foliar spraying. Calcium has a vital role in the anatomy, physiology and biochemistry 

of organisms [20], being essential for plants (required as Ca2+), as it has a central role in stress 

responses [21] and acts as a signal transduction agent [22]. It is further needed as a cofactor by 

enzymes taking part in the catabolism of ATP and phospholipids [23], and provides integrity and 

stability to cell walls [22]. In the human body, it also is a very crucial nutrient for bone development 

and normal functioning of the circulatory system [24–27]. However, Ca deficiency can trigger 

osteoporosis [20] and rickets [25]. In this context, to minimize Ca defiency in the human population, 

the aim of this study is to develop an itinerary for Ca biofortification of potato tubers. Regarding the 

importance of this staple food for agro-industrial processing, Agria variety was used as a test system 

because of the range of uses, such as french fries and starch/flakes [28]. 

2. Experiments 

The experimental potato field, located in the Western of Postugal, was used to growth cv. Agria 

(Solanum tuberosum L.). During the agricultural period, from 15th March (planting date) to 29th July 

of 2019 (harvest date), air temperatures reached an average daily of 21.9 °C and 13.8 °C (with 

maximum and minimum values of 34.8 °C and 4.7 °C, respectively). The average rainfall was 0.51 

mm, with a daily maximum of 10.4 mm. After the beginning of tuberization, seven foliar spraying 

(with 6-8 days interval) were performed with CaCl2 (12 and 24 kg ha−1). As Ca(EDTA) might become 

highly toxic to plants only one foliar application of 24 kg ha−1 with Ca(EDTA) was carried out, 

whereas with 12 kg ha−1 seven spraying applications were performed. Control plants were not 

sprayed at any time with CaCl2 or Ca(EDTA). All treatments were performed in quadruplicate in 

plots of 20 × 24 m. 

Calcium, K, S and P content were determined in randomized tubers after being cut, dried (at 60 

°C, until constant weight) and grounded, using a XRF analyzer (model XL3t 950 He GOLDD+) under 

He atmosphere, according to [29]. 

Height, diameter and dry weight were measured considering four randomized tubers per 

treatment. Colorimetric parameters, using fixed wavelength, followed [30]. Brightness (L) and 

chromaticity parameters (a* and b* coordinates) were obtained with a Minolta CR 400 colorimeter 

(Minolta Corp., Ramsey, NJ, USA) coupled to a sample vessel (CR-A504). Using the illuminant D65, 

the system of the Commission Internationale d’Éclaire (CIE) was applied. The parameter L represents 

the brightness of the sample, indicating the variation of the tonality between dark and light, with a 

range between 0 (black) and 100 (white). Parameters a* and b*, indicate color variations between red 

(+60) and green (−60), and between yellow (+60) to blue (−60), respectively. The approximation of 

these coordinates to the null value translates neutral colors like white, gray and black. Chroma is the 

relationship between the values of a* and b*, where the real color of the analyzed object is obtained. 

Hue is the angle formed between a* and b*, indicating the saturation of the object’s color. To calculate 

Chroma (C), Equation (1) was used and, to calculate Hue-Angle (H), Equation (2). Measurements 

were carried out in quadrupled in the pulp of fresh tubers at harvest. 

C* = √� ∗�+ � ∗� (1) 

H* = ����� 
�∗

�∗
 (2) 

Data were statistically analyzed using a One-Way ANOVA to assess differences among 

treatments in cv. Agria, followed by a Tukey’s for mean comparison. A 95% confidence level was 

adopted for all tests. 

3. Results 

After harvest, Ca, K, S and P accumulation in the tubers was assessed in cv. Agria, (Table 1). 

Relatively to the control, the content of Ca was significantly higher in all treatments (except in CaCl2–

12 kg ha−1), with an increase in Ca content ranging between 1.07–2.22 fold (maximum levels obtained 

with 12 kg ha−1 Ca-EDTA). Besides, considering all the four macronutrients analyzed, the treatment 
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of 12 kg ha−1 Ca(EDTA) showed the maximum contents with significant differences, regarding the 

control, whereas the control showed the lowest contents (Table 1). Regarding both fertilizers, the 

highest content prevailed in the treatments of Ca(EDTA), in spite of only one application for 

treatment with 24 kg ha−1 were carried out. Actually, Ca(EDTA) at a concentration of 24 kg ha−1 

showed the second highest levels in Ca, S and P content. Regarding only the treatments applied with 

CaCl2, is possible to identify a tendency of increasing contents (in Ca, K, S and P) when spraying 

concentration increased (12 kg ha−1 to 24 kg ha−1). 

Table 1. Mean values ± S.E. (n = 4) of Ca, K, S and P in tubers of Solanum tuberosum L., cv. Agria, at 

harvest. Different Letters indicates significant differences, of each parameter, between treatments (P 

≤ 0.05). Foliar spray was carried out with two concentrations (12 and 24 kg·ha−1) of CaCl2 and 

Ca(EDTA). Control was not sprayed. 

Treatments 
Ca K S P 

g kg−1 

Control 0.57d ± 0.01 30.73e ± 0.19 1.13c ± 0.06 0.80d ± 0.05 

CaCl2 (12 kg ha−1) 0.61d ± 0.02 31.57d ± 0.08 1.15c ± 0.01 0.62e ± 0.01  

CaCl2 (24 kg ha−1) 0.72c ± 0.00 35.40b ± 0.02  1.24c ± 0.00 1.00c ± 0.00 

Ca(EDTA) (12 kg ha−1) 1.27a ± 0.01  41.23a ± 0.15 2.07a ± 0.03 1.72a ± 0.01 

Ca(EDTA) (24 kg ha−1) 1.07b ± 0.00 32.28c ± 0.09 1.49b ± 0.01 1.34b ± 0.01 

Independently of the Ca higher content, dry weight, height and diameter of tubers did not varied 

significantly (Table 2). However, 24 kg ha−1 CaCl2 tubers showed a lowest dry weight comparing to 

the applied treatments. Also, treatment with 12 kg ha−1 CaCl2 showed the highest percentage of dry 

weight. 

Table 2. Mean values ± S.E. (n = 4) of dry weight, height and diameter in tubers of Solanum tuberosum 

L., cv. Agria, at harvest. Letter a indicates no significant differences, of each parameter, between 

treatments (P ≤ 0.05). Foliar spray was carried out with two concentrations (12 and 24 kg·ha−1) of CaCl2 

and Ca(EDTA). Control was not sprayed. 

Treatments 
Dry Weight  

(%) 

Height  

(cm) 

Diameter  

(cm) 

Control 17.12a ± 0.69 8.20a ± 0.49 7.57a ± 0.48 

CaCl2 (12 kg ha−1) 21.89a ± 0.89 10.10a ± 1.01 8.03a ± 0.52 

CaCl2 (24 kg ha−1) 16.77a ± 2.52 9.20a ± 0.96 6.63a ± 0.52 

Ca(EDTA) (12 kg ha−1) 20.97a ± 1.87  8.20a ± 0.61 6.60a ± 0.42 

Ca(EDTA) (24 kg ha−1) 18.99a ± 0.44 12.67a ± 2.27 7.97a ± 0.38 

Considering the colorimetric parameters in the fresh tubers of cv. Agria, it was found that (Table 

3) brightness/luminosity had no significant changes. However, Chroma parameter (saturation) did 

varied significantly, being the more intense color obtained in 12 kg ha−1 Ca(EDTA) treatment. Control 

and 24 kg ha−1 Ca(EDTA) treatment showed similar values of Chroma. Concerning Hue parameter, 

only 12 kg ha−1 Ca(EDTA) showed significant differences regarding the remaining treatments and 

control. 
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Table 3. Mean values ± S.E. (n = 4) of colorimetric parameters (L, Chroma and Hue) in fresh tubers of 

Solanum tuberosum L., cv. Agria, at harvest. Letters a and b indicates significant differences, of each 

parameter, between treatments (statistical analysis using the single factor ANOVA test, P ≤0.05). 

Foliar spray was carried out with two concentrations (12 and 24 kg·ha−1) of CaCl2 and Ca(EDTA). 

Control was not sprayed. 

Treatments L Chroma Hue 

Control 62.88a ± 1.36 22.76b ± 0.37 105.8a ± 0.2 

CaCl2 (12 kg ha−1) 62.74a ± 2.03 24.18a,b ± 0.89 104.9a ± 0.4 

CaCl2 (24 kg ha−1) 63.51a ± 0.74 25.09a,b± 0.38  108.5a ± 0.1 

Ca(EDTA) (12 kg ha−1) 62.92a ± 0.71  30.47a ± 2.91 102.3b ± 1.1 

Ca(EDTA) (24 kg ha−1) 64.98a ± 3.12 23.27b ± 0.82 105.3a ± 0.2 

4. Discussion 

Calcium accumulation in potato tubers rely upon the interaction of different factors, as such the 

development of the tuber, phloem and xylem delivery, and other chemical interactions within the 

tuber [31]. In fact, Ca depends on its delivery via the xylem because in phoem it is almost immobile 

[32]. Different types of cultures provided with Ca, showed an increased of this mineral content, 

mainly using CaCl2 [33]. However despite that, Ca-EDTA is not usually used, there were some studies 

carried out, namely with sweetcorn [34] and apples [35], that applied this type of Ca chelate. In this 

context, CaCl2 and Ca(EDTA) were somewhat applied in the same concentrations in tuber plants of 

cv. Agria. Yet, despite of just one foliar application with 24 kg ha−1 Ca(EDTA), it showed the second 

highest Ca content regarding the remain treatments. In fact, the two concentrations applied with 

Ca(EDTA) showed higher Ca content likening with the two treatments of CaCl2 (Table 1). Comparing 

the number of foliar applications of both treatments with Ca(EDTA), it was possible to verify that 

treatment with 24 kg ha−1 (applied only once) presented just less 15.75 % Ca content than the treatment 

with 12 kg ha−1 (that was applied seven times). However, as seen in tomato plants, Ca(EDTA) is toxic 

to plants when applied repeatedly and several times [36]. Regarding the nutrient content (Table 1) 

cv. Agria varied among the treatments. Potassium is one of the main mineral present in tubers [37], 

and the contents of Ca and P obtained were higher compared to another study that used the same 

cultivar [38]. Also, it can been seen that, with the increase in Ca content, S content also increased, as 

being reported previsioly by [39]. On the other hand, higher contents of S can also improve the 

absorption of K and P [39], as found in our study (Table 1). 

Considering the importance of the dry matter content, being a relevant characteristics for 

industrial processing and one criteria for the classification of potato tubers [40], it was possible to 

verify no significant differences regarding the control. Also, the industry considers a requirement for 

potatoes to have a dry matter content higher than 20% (which is the case of 12 kg ha−1 CaCl2 and 

Ca(EDTA) treatments—Table 2), since higher dry matter content reduces fat absorption during the 

frying process, producing more crispy chips [40]. Actually, it was found out (in other potato varieties) 

a positive relationship between Ca application and the hardness of fries, improving this quality 

parameter [41]. Considering, the dry matter obtained in this study, it was further possible to verify a 

similarity to the values obtained by other authors for the same variety [42,43]. Regarding the height 

and diameter of tubers, there was not any interference relatively to the Ca-biofortificantion process 

(Table 2), maintaining its industrial characteristics. According to the Portuguese law, tubers caliber 

should be higher than 3.5 cm [44], being in agreement with our data for cv. Agria and therefore, the 

biofortified potatoes are suitable for industrial processing [45]. Also, the diameter of tubers acquired 

in this study, is in accordance with values obtained by other authores for the same variety [46,47]. 

The perception of color, as a definition of quality for agricultural products, such as in coffee 

[30,48], strawberries, grapes, plums [49], sweet potato [50], apples [51,52] and potatoes [1,8] is very 

important to consumers [53]. Regarding L paramenter, the data obtained showed lower values 

compared to other studies for the same cultivar [47,54–56]. Also, Chroma parameter, showed lower 

values compared to other studies for the same cultivar (except in Chroma—12 kg ha−1 Ca(EDTA) 

treatment) [5,55]. However, it showed a higher Hue value compared to other authors [5]. In this 
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context, there was minor effects among the different Ca treatments, as such the treatment that showed 

higher Ca content (Table 1) showed the maximum value for Chroma and the lowest value for Hue 

(Table 3). 

5. Conclusions 

In all treatments, pulverized with CaCl2 and Ca(EDTA), S. tuberosum cv. Agria showed a 

significant increase of Ca contents. Nevertheless, for both applied concentrations of Ca(EDTA) an 

higher Ca content was found relatively to CaCl2 treatments (being 12 kg ha−1 Ca(EDTA) treatment the 

one that showed the higher Ca biofortification). Additionally, Ca biofortification did not trigger any 

changes in the dry matter, height, diameter and in L parameter of color. However, minor changes 

occurred in the colorimetric parameters Chroma and Hue. 
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