Flavonoids from Argyreia nervosa (Burm.f) Bojer: A Ready Arsenal Against Pests as well as Diabetes Anuja D. Kamble¹ and Anjali A. Kulkarni^{1*}

¹Department of Botany, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India.

*Corresponding author: <u>anjali.uop@gmail.com</u> or <u>akulkarni@unipune.ac.in</u>

INTRODUCTION	RESULTS		Figure 4: 2-D representation of different types of intermolecular protein-ligand interactions.		
•Diabetes mellitus -Type 2 (DM 2) has currently		is of chloroform leaf extract.			
become one of the most challenging non-	Test	Chloroform Leaf Extract	GLY LEU	A:200 A:235 GLY A:306	
infectious diseases to treat.	Alkaloids (Mayer's)		A:306 VAL A:162 A:163 VAL A:234 ILE	HIS A:201 ALA A:198	
•Despite the introduction of several oral non-	Alkaloids (Dragendorff's)		A:200 H TYR TYR51	GLU A1233	
insulin drugs to treat NIDDM, patient compliance	Alkaloids (Wagner's)		H HIS A:201	VAL A:234 H A:58 H A:300 H A:300	
remains poor due to severe side effects. Hence	Alkaloids (Hager's)				
search for new molecules with reduced side effects	Phenols	+ + +	ALA A:198 GLU A:233	SER A:199 A:197	
is still continuing.	Flavonoids	+ + +	HIS A:197 H	HIS A:162 HIS	
•In recent years, <i>in-silico</i> methodologies have	Tannins		A:195 A:300 TRP A:58	A:101 TYR A:62 A:195	
become an important aspect of drug discovery	lernenes	+ + +	Acarbose	Vitexin	
	Sterolas		(PubChem ID : 41774)	(PubChem ID : 5280441)	
process due to their time saving and cost effective	Quintrics	+ + +			
nature. These computer aided drug design (CADD)	Figure 1 : PPA Inhibitory Activity of Va	rious Plant Extracts Using Qualitative	TVR A:151	GLN HIS A:101	
approaches are advantageous for reducing the use	A:163 GLY A305 TRP	A:63			

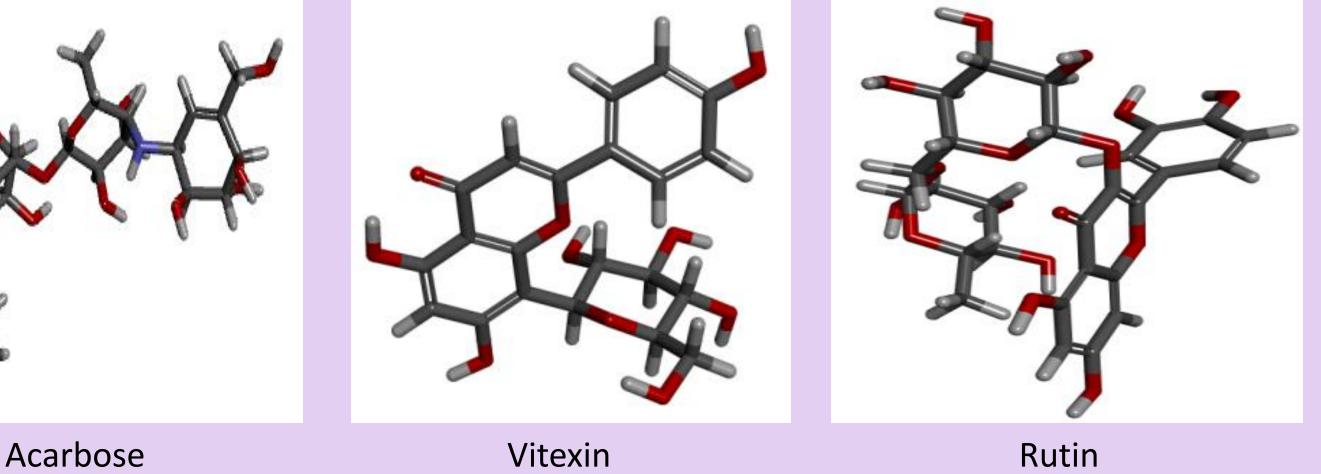
of animals for *in vivo* experiments.

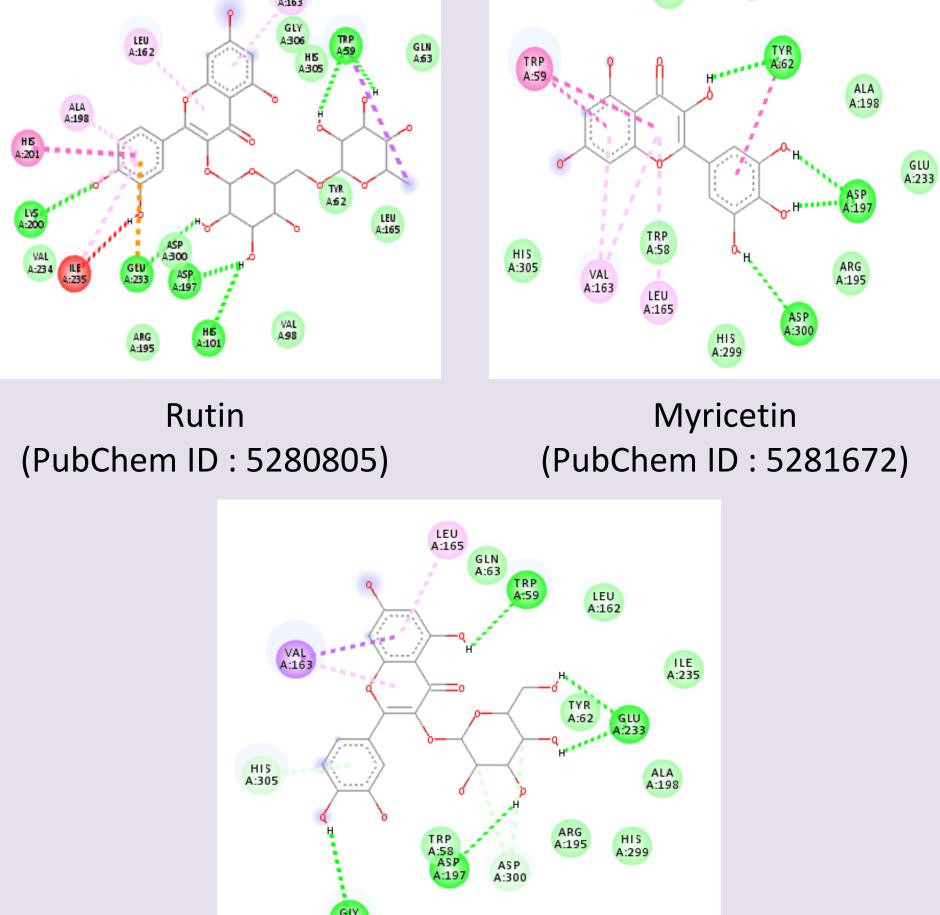
•Many *in-silico* studies have been proposed to prove the potency of natural products to inhibit the alpha amylase and alpha glucosidase enzymes. •The current study was carried out to identify and validate the alpha amylase inhibitory flavonoids from Argyreia nervosa (Berm.f.) Bojer.

OBJECTIVE

find out if flavonoids from leaf We aimed to extracts of Argyreia nervosa (Burm.f) Bojer (Family: Convolvulaceae) exhibit could alpha-amylase inhibitory activity in vitro and in silico.

MATERIALS AND METHODS


•The leaf sample was collected from Savitribai Phule Pune University and authenticated by **Botanical** of India Survey (BSI/WRC/IDEN.CER./2020/94)



B: Blank, C: Control, EC: Enzyme Control, SC: Substrate (drug) Control, P1: Pet Ether, P2: Chloroform, P3: Ethyl Acetate, P4: Acetone, P5: Methanol, P6: Water

Flavonoid content : 378.83 ± 0.76 µg/mg

Figure 2 : The 3D ligand structures used in docking studies for targeting alpha-amylase enzyme (Identified by LC-MS)

SER A:199

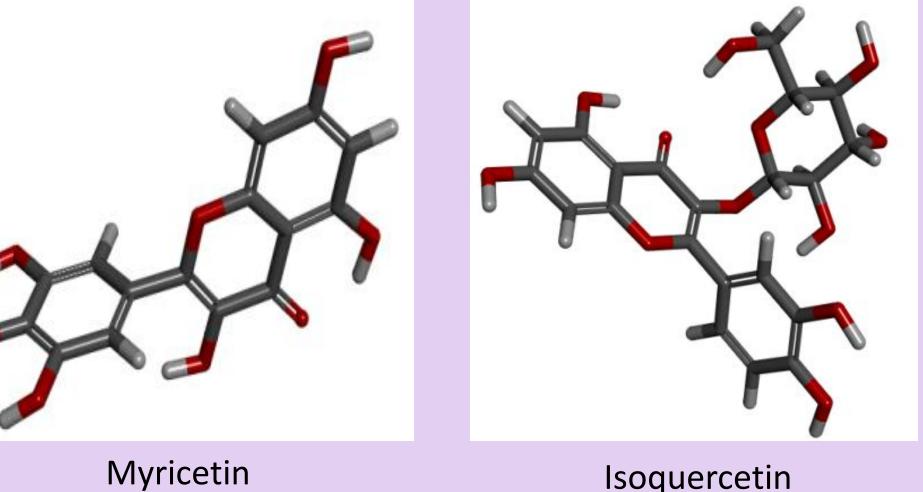
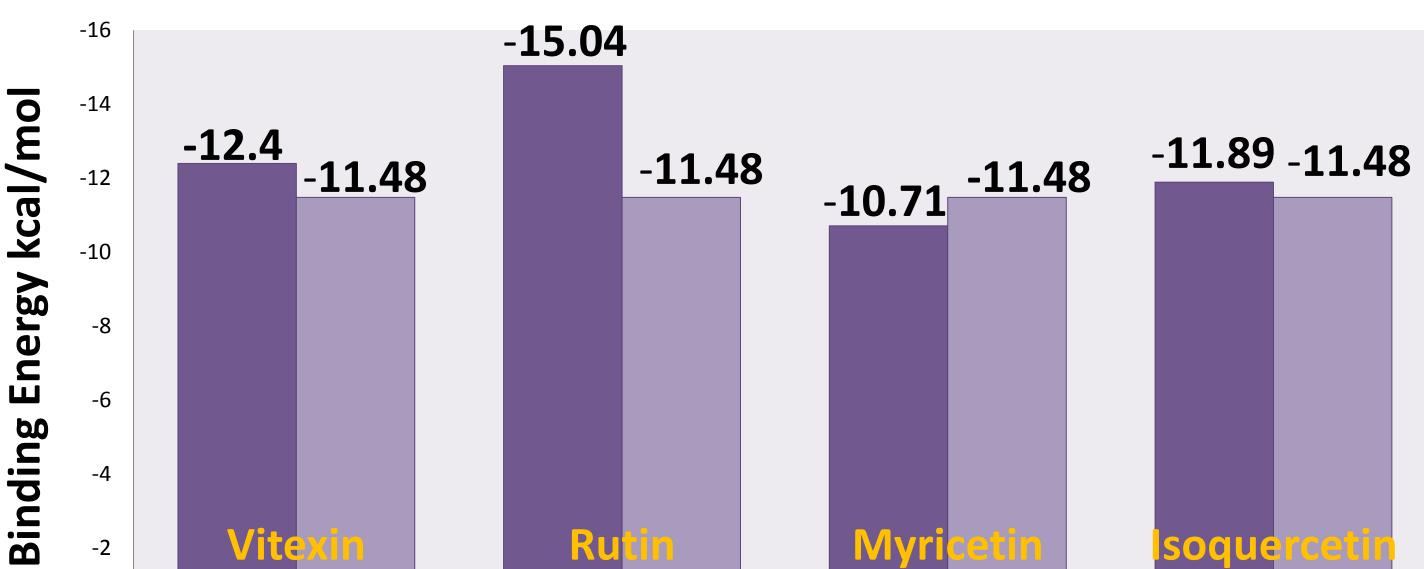

Isoquercetin (PubChem ID : 5280804)

 Table 2: Physicochemical parameters of ligands
screened for Lipinski Rule.

- •Soxhlet Extraction of 50 grams of leaf sample was done using solvents with increasing polarity.
- •Preliminary phytochemical analysis was done using freshly prepared extracts.
- •The concentrated extracts (1mg/ml DMSO) were checked for alpha-amylase inhibitory activity using Starch-lodide assay.
- •Total flavonoid content of chloroform extract was estimated by aluminium chloride method.
- •Column chromatography was performed to separate the different compounds present in the chloroform extract.
- •LC-MS analysis of the alpha amylase inhibitory fraction obtained from column chromatography was done to identify the compounds present in it.
- •The compounds identified by LC-MS analysis were docked on porcine pancreatic alpha amylase PDB


(PubChem ID : 41774)

(PubChem ID : 5280441) (PubChem ID : 5280805)

(PubChem ID : 5281672) (PubChem ID : 5280804)

Ligand	Mol. Wt.	H- Bond	H-Bond	LogP	Molar	Rules
	g/mol	Donor	Accep-		Refractivity	obeyed
			tor			
Vitexin	432.4	7	10	-0.0655	103.5340	4/5
Rutin	610.5	10	16	-1.8788	137.4954	2/5
Myricetin	318.23	6	8	1.7165	75.71527	4/5
Isoquercetin	464.4	8	12	-0.7306	106.2738	3/5

CONCLUSION

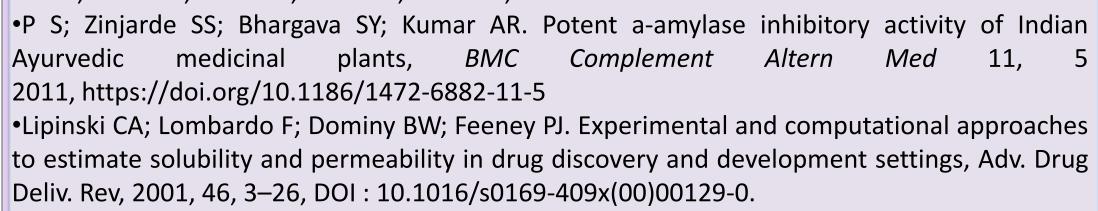
•Out of diverse secondary metabolites identified fwith LC-MS-MS from chloroform extract of Argyreia nervosa (Burm.f) Bojer. , vitexin, rutin, myricetin and isoquercetin showed significant alpha amylase inhibitory activity.

•ASP197 was the essential amino residue involved in the intermolecular interactions.

•This work provides important insights towards drug discovery process for controlling diabetes mellitus.

REFERENCES

•Trease, GE; Evans WC. Pharmacognosy, 15th Ed.; Saunders Publishers, London, 2002 pp. 42-44, 221-229, 246-249, 304-306, 331-332, 391-393.



•The identified flavonoids were also screened for

