Development and characterization of liposomal formulation containing phytosterols and tocopherols with the aim of reducing low-density lipoprotein cholesterol

Asmita Poudel¹, George Gachumi¹, Zafer Dallal Bashi¹, Ildiko Badea¹ and Anas El-Aneed¹ ¹ College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan

INTRODUCTION	MATERIALS AND METHOD	RESULTS AND DISCUSSIONS	Following validation parameters were assessed:	
Phytosterols are plant sterols having structural resemblance with cholesterol.	1. Formulation of liposomes	1. Particle size and zeta potential		
 Phytosterols lowers LDL-cholesterol in the range of 7- 12% (approved by FDA and health Canada).¹ Tocopherols (vitamin E) are antioxidants.² 	 Methods i) Thin layer hydration Homogenization³ 	The particle size was significantly larger when employing the Mozafari method (260 nm) compared to homogenization (186 nm) and ultrasonication (196 nm) methods. Whereas	 a. Linearity b. Sensitivity c. Accuracy and Precision d. Matrix effect e. Dilution integrity 	
Phytosterols and tocopherols, extracted from canola oil deodorizer distillate (canola waste), can be utilized as pharmaceuticals and nutraceuticals.	 ii) Thin layer hydration Ultrasonication⁴ iii) Mozafari method⁵ 	zeta potential was comparable among all three formulations (-14 mV to -9 mV) as shown in Table 1 . Polydispersibility index (PDI) was in the range of 0.29-0.37. All of these values	f. Stability All of these parameters met the ICH acceptance criteria.	
ChallengesSolution- Liposomes1.Lipophilicity1.Liposome entraps lipophilic compounds.	Phosphatidylcholine(PC) was utilized in all three methods	are adequate for colloidal stability. Table 1: Particle size (nm), Zeta potential (mV), and polydispersibility index (PDI) of liposomes prepared using	3. Entrapment efficiency	
2.Oxidation mediated by heat and light. 2. Liposomes can prevent oxidation of bioactives.	and the utilized phase transition temperature was 55 °C.	homogenization, ultrasonication, and Mozafari methods expressed as mean \pm standard deviation where $*$ represents statistical significance (p<0.05).	All three methods showed the intended entrapment efficiency that was greater than 89% as shown in table 3 .	
 Further, liposomes can enhance cholesterol lowering efficacy of phytosterols. The aim of this study is to develop liposomal 	Particle size and zeta potential characterization were done using Malvern zeta sizer.	Formulation techniquesAverage particle size (nm)PDIZeta potential (mV)	Table3:Entrapmentefficiencyofliposomalphytosterolsandtocopherolsformulatedusinghomogenization,ultrasonication,andMozafarimethodsexpressedasmean±deviation.	
formulation containing phytosterols and tocopherols with the aim of reducing LDL-cholesterol (Figure 1)	2. Development and validation of LC-MS/MS method	Homogenization 186.3±4.4 0.370 ±0.001 -13.0±5.0	Methods Entrapment efficiency (EE %) Brass Camp Sito Alpha Gamma Delta	
H_9C CH_9		Ultrasonication 196.2±16.1 0.294±0.084 -14.0±3.4	Homo- genization 95.8±1.7 94.1±2.0 94.8±3.0 91.6±2.4 90.5±2.8 91.5±3.5	
$H_{\downarrow} \downarrow $	 MS and LC conditions AB Sciex quadrupole linear ion trap (QTRAP 6500) with 	Mozafari method 260.0±23.0* 0.348±0.087 -9.8±0.3	Ultra sonication 91.4±2.4 92.2±3.3 90.1±1.8 91.2±2.0 89.8±3.0 90.0±2.2 Mozafari 89.4±2.7 93.7±6.0 93.0±6.0 92.3±7.5 97.4±1.8 95.2±1.4	
Liposomes	 APCI positive mode was used (figure 2). UPLC system was Agilent binary pump, Agilent 1290 infinity. 	2. LC-MS/MS method development LC-MS/MS method was successfully developed and validated a per ICH guideline (the chromatogram is figure 3).		
	 Agilent Poroshell, C18 column 2.1 mm × 150 mm, 5µm was 			

Figure 1: Research summary showing liposomal formulation of phytosterols and tocopherols. Cholesterol lowering efficacy will be assessed in animal model.

HYPOTHESES AND OBJECTIVES

Hypothesis I

Phytosterols and tocopherols extracted from canola oil deodorizer distillate can be entrapped at high efficiency (above 90%) using optimized liposomal formulation comprised of soy phosphatidylcholine.

Objective 1: To **formulate** liposomes containing phytosterols and tocopherols using- thin layer hydration homogenization, thin layer hydration ultrasonication, and Mozafari methods.

utilized.

• Elution was isocratic with Acetonitrile (0.1%Acetic acid) and

methanol (0.1% Acetic acid) at 99:1 ratio.

• Method validation was done as per International council for

Harmonization (ICH) guidelines⁶.

- Figure 3. LC-MS/MS spectra of phytosterols and tocopherols. **1**-brassicasterol, **2**-campesterol, **3**-stigmasterol, **4**-β-sitosterol, I- δ , II- β/γ , III- α tocopherols. Cholestanol and ractocol were used as internal standard for phytosterols and tocopherol respectively.
- 3. Method Validation

Table 2 : Linear range and sensitivity of phytosterols and tocopherols (LLOQ represents lower limit of quantitation and LOD represents limit of detection).

CONCLUSIONS AND FUTURE WORK

✤ All three-formulation strategies showed size and zeta potential suitable for colloidal stability and oral delivery. Robust analytical method was developed and validated. It was successfully applied to measure entrapment efficiency. Ongoing work is the assessment of cholesterol lowering efficacy of liposomal phytosterols in animal model.

REFERENCES

1. Ras et al. British Journal of Nutrition, **2014**, 112, 214-219. 2. Tang et al. European Food Research and Technology, 2001, 213, 286-289.

3.Chung et al. Colloid, 2014, 454, 8-15

4. Akbarzadeh et al. Nanoscale Res.Lett. 2013, 8, 1-9

5. Mozafari et al. Micron 2007, 38, 841-347

6. International council on Harmonization, 2005, 11-12

ACKNOWLEDGEMENT

The authors thank Dr. Amal Makhlouf for her help in

formulation development.

The authors thank Dr. Ellen Wasan and Dr. Kishor Wasan

Objective 2: To **develop and validate** liquid chromatography tandem mass spectrometry(LC-MS/MS) method for comparative evaluation of the entrapment efficiency of liposomes prepared by the above-mentioned techniques.

Figure 2. Liquid chromatographic system coupled v spectrometer

Compound name	LLOQ (µg/mL)	LOD (µg/mL)	Linear range (µg/mL)		for their valuable so The authors thank provided in operati
Tocopherols	0.25	0.01	0.25-10		Governmen
Phytosterols	0.05	0.005	0.05-10		Saskatchewa
					Agriculture develop
	name Tocopherols	name (μg/mL) Tocopherols 0.25	name(µg/mL)(µg/mL)Tocopherols0.250.01	name (µg/mL) (µg/mL) (µg/mL) Tocopherols 0.25 0.01 0.25-10	name (μg/mL) (μg/mL) (μg/mL) Tocopherols 0.25 0.01 0.25-10

