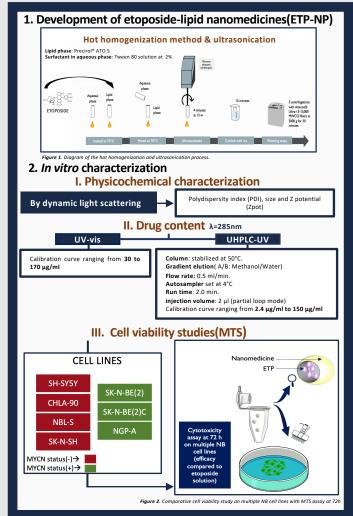
Design and *in vitro* study of etoposide loaded lipid nanomedicines for neuroblastoma treatment


Souhaila H. El Moukhtari^{*}, Carlos Rodríguez-Nogales, Hugo Lana, María J. Blanco- Prieto

BACKGROUND

Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain

Neuroblastoma is the most frequent pediatric extracranial solid tumor. Patient's outcome is strongly related with heterogeneity and complex tumor biology.^{1,2} Chemotherapy emerges as the last opportunity for children with poor prognosis but can be extremely toxic. Etoposide is a podophyllotoxin derivative given to neuroblastoma patients that often presents acute and late toxicity.³ Nanotechnology has been widely studied in cancer treatment with the aim of improving the therapeutic index of chemotherapeutic drugs.⁴ Lipid nanosystems in particular are known to have low toxicity and avoid the use of organic solvents.⁵

METHODS

OBJECTIVE

The objective of this work is to **design** and **characterize** etoposide-loaded lipid nanomedicines with the aim **of improving therapeutics in neuroblastoma** management.

RESULTS

Table 1. Physicochemical characteristics of the developed nanomedicines (data n ≥ 3, data: mean ± SD) and quantification of etoposide within lipid nanomedicines s by UV-vis method and UHPLC-UV method (data n ≥ 2, data: mean ± SD)

DRUG CONTENT					PHYSICOCHEMICAL		
UV	-VIS	UHPLC-UV		CHARACTERIZATION			
Drug loading	EE	Drug loading	EE	Size	PDI	Zpot	
4.58 ± 0.60 μg/mg	89.23 ± 4.58 %	4.26 ± 0.18 μg/mg	85.66 ± 2.53 %	105 ± 3	0.19 ± 0.01	-19.9 ± 4.2	

Cell viability studies after 72 hours of treatment

Table 2. IC50 values of etoposide in solution and etoposide-loaded lipid nanomedicines on different neuroblastoma cell lines after 72 h of treatment (data n ≥ 3, data: mean ± SD)

	SK-N-BE(2)	SH-SY5Y	SK-N-BE(2)C	NGP-A	SK-N-SH	CHLA-90	NBL-S
ETP SOLUTION	0.752 ±	1.202 ±	0.505 ±	0.206 ±	0.199 ±	18.29 ±	0.047 ±
	0.125 μM	0.297 μM	0.141 μM	0.133 μM	0.054 μM	4.021 μM	0.015 μM
ETP NP	0.328 ±	0.246 ±	0.558 ±	0.310 ±	0.164 ±	7.892 ±	0.042 ±
	0,150 μM	0.042 μM	0.140 μM	0.014 μM	0.040 μM	2.362 μM	0.037 μM

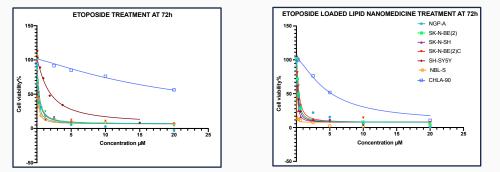


Figure 3. Cell viability assays. Cells were exposed to etoposide(ETP) and etoposide-loaded nanomedicines (ETP-NP) treatments for 72 hours.

CONCLUSIONS

- ETP-NP were successfully developed (homogeneous distribution, adequate size and surface charge) suggesting that the formulation is physiochemically adequate.
- Drug loading study revealed high EE with UHPLC-UV method and UV-vis method indicating that lipid nanoparticles and the chosen technique are a suitable option for etoposide's quantification within lipid nanomedicines.
- UHPLC-UV enables to have wider calibration curve range, better reproducibility and is more appropriate in terms of quality to quantify etoposide in these nanosystems.
- Cytotoxicity assay revealed similar efficacy for etoposide solution and ETP-NP suggesting that the encapsulation process did not affect etoposide's antitumor efficacy.
- ETP-NP enhance efficacy of etoposide in CHLA-90, SH-SY5Y and SK-N-BE(2) cell lines suggesting that ETP-NP could overcome drug resistance.

In-depth *in vitro* and *in vivo* tests will be performed to evaluate the therapeutic potential of ETP-NP in neuroblastoma.

NEN

ACKNOWLEDGEMENTS

This study was supported by grants from the Children with Neuroblastoma Association (NEN, Nico contra el Cancer).

