IECP 2020 The 1st International Electronic Conference on Pharmaceutics 01-15 DECEMBER 2020 | ONLINE

Chaired by DR. ANDREA ERXLEBEN and PROF. DR. ELISABETTA GAVINI

pharmaceutics

<u>Jonathan P. May</u>,^{1,2,4,*} Anastasia Polydorou,^{1,2} Sara Ferri,^{1,2,4} Qiang Wu,³ Eleanor Stride,³ Dario Carugo,^{1,4} Nick D. Evans ^{1,2}

¹ Bioengineering Group, Faculty of Engineering and Physical Sciences, University of Southampton, UK
² Bone and Joint Research Group, Faculty of Medicine, Southampton General Hospital, UK
³ BUBBL Group, Institute of Biomedical Engineering, University of Oxford, UK
⁴ Department of Pharmaceutics, School of Pharmacy, University College London (UCL), UK

* Corresponding author: j.p.may@soton.ac.uk

Abstract

Impaired fracture healing impacts patients' quality of life and imposes a financial burden on healthcare services. Up to 10% of bone fractures result in delayed/nonunion fractures, for which new treatments are urgently required. However, systemic delivery of bone anabolic molecules is often sub-optimal and can lead to significant side effects. In this study, we developed ultrasound responsive nano-sized vehicles in the form of perfluorocarbon nanodroplets (NDs), as a means of targeting delivery of drugs to localised tissues.

We tested the hypothesis that NDs could stably encapsulate BIO (GSK-3 β inhibitor), which could be released upon ultrasound (US) stimulation to activate Wnt signaling and induce bone formation.

Keywords:

Nanoparticle; Phase-change Nanodroplet; Ultrasound; Externally stimulated triggered release, Bone fracture healing;

Introduction

Nanodroplets

- Nano-sized particles with a lipid shell and a liquid perfluorocarbon core
- Upon ultrasound exposure the liquid core undergoes a phase-change to form a bubble

Nanodroplets – characterisation: Size

 The size, distribution and concentration of NDs was analysed by dynamic light scattering (DLS), nano tracking analysis (NTA) and cryo-EM

Cryo-EM image of BIO-PFB NDs

4

Qiang Wu

Nanodroplets – characterisation: Stability

• Size and concentration were used to assess ND stability at 4, 20 and 37°C using DLS and NTA

IEC

Nanodroplets – acoustic characterisation

Objective: Design a setup to perform the acoustic characterization of NDs in a fracture gap

Initially this was studied in a model to check ultrasound interference and reflection

IECP 2020

6

Nanodroplets – acoustic characterisation

A hydrogel containing NDs was injected into a bespoke bone fracture model and stimulated by ultrasound allowing simultaneous capture of optical images and acoustic emissions

Microscope-compatible water tank (190x110x60 mm)

Hydrogel containing NDs/MBs NB. Bone impedance: 5.41 x 10⁶ kg/(m²s)

7

Nanodroplets – acoustic characterisation

Experiments were performed to investigate the ND vaporisation within the fracture model

The Pwelch method was used to study the strength of the signal as a function of frequency

Harmonic (1, 2, 3... MHz), ultraharmonic (1.5, 2.5, 3.5... MHz) and broadband energies of the recorded signals were calculated for a range of applied pressures

Mean NDs Mean no NDs

📥 MBs

IECP

8

- All energies increased when the acoustic pressure exceeded 0.5 MPa
- This increased response is likely due to ND vaporisation
- This is encouraging for the potential use of NDs as therapeutic agents

ND: PFP DSPC/PEG40s; Hydrogel: 2% Low Melting Point Agarose gel Sara Ferri Acoustic parameters: f: 1 MHz, PRF: 1 Hz, Duty cycle: 1-5%, T: 30s, P: 0.04 – 0.95 MPa

Nanodroplets - BIO loading

NDs were loaded with BIO during preparation BIO loading was assessed by HPLC (Abs_{max}: 505 nm)

- Initial loading was found to be: 48.7%
- Following centrifugation and filtration: 21.9%

ND centrifugation: Before Pellet Supernatant

Qiang Wu

Nanodroplets - BIO release

- BIO loaded NDs in PBS remain stable with no BIO release
- Ultrasound activation causes near quantitative BIO release

Qiang Wu ND: BIO loaded DSPC/Chol/DSPE-PEG/PFB in PBS buffer Acoustic parameters: f: 1 MHz, Duty cycle: 5%, P: 1.1 MPa

Nanodroplets - BIO release

- Some BIO leakage was observed in serum containing buffers at 37°C
- Remaining BIO was released using ultrasound (US)

Qiang Wu

Nanodroplets cell toxicity

ND cytotoxicity was assessed in patient derived, bone marrow stromal cells (BMSCs) with Alamar Blue (24 h)

No safety concerns were observed for NDs (conc. <10⁹ NDs/mL) when incubated with BMSCs for 24 h

Anastasia Polydorou

Nanodroplets - BIO release (cell read-out)

In vitro bioactivity of BIO-NDs was evaluated in a 3T3 Wnt-pathway reporter cell line with luciferase readout

- Free BIO peak activity = $5 \mu M$
- BIO-NDs, induce 70% less activity at 5 µM

Note: BIO becomes toxic to the cells above 5 μ M (Free BIO), this value is higher for BIO-NDs (~10 μ M) due to the relative amount of BIO available

Nanodroplets - BIO release

In vitro bioactivity of BIO-NDs was evaluated in a 3T3 Wnt-pathway reporter cell line with luciferase readout

- This suggests that the 30% activity seen in the previous figure is mostly caused by the passive release of BIO from the NDs
- Reduction of bioactivity at 48 h for 10-20 μ M is due to BIO cell toxicity

14

Anastasia Polydorou

Nanodroplets - in vivo biodistribution

Organ

Femoral bone hole defects (1-2mm) were made in WT-MF1 mice (age: 8-12wks) and DiR-labelled NDs (100µL, 10¹¹ NDs/mL, i.v.) were injected postfracture to determine biodistribution by imaging

Groups:	Surgery	ND
1. Injury (4)	+	+
2. Healthy control (2	2) -	+
3. Naïve control (1)	-	-

15

Organs were imaged and the majority of fluorescence (DiR) is observed in the liver

Nanodroplets - in vivo biodistribution

One-way ANOVA w Tukey's post-hoc analysis

Analysis of femurs:

- An increase in fluorescence intensity was observed in the femur with a defect, over the contralateral femur (without a bone hole defect)
- All femurs from a mouse which underwent surgery have higher levels of fluorescence intensity to those from a mouse that did not undergo surgery

Conclusions

ND formulation:

- Nanodroplets were prepared by sonication ~230 nm
- Nanodroplets have been loaded with BIO and were shown to be relatively stable in PBS at 4°C and 37°C
- NDs retained >90% BIO in PBS until US was applied, which caused ~100% release

ND acoustic characterisation:

• NDs responded well to US exposure at biologically compatible parameters

ND In vitro:

- ND exposure up to a concentration of 10⁹ NDs/mL showed no cytotoxicity (24 h)
- BIO-loaded NDs induced Wnt pathway activation

ND In vivo:

• NDs were shown to localise at the fracture site in a murine model

Ongoing and future work:

- Improve BIO-ND loading stability
- Investigate ND vaporisation by using ultrahigh speed imaging
- Observe where NDs localise on a cellular scale in bone/liver (histology)
- Study ND release in vivo using ultrasound

IECP 2020

17

Southampton

Dr Nick Evans

Dr Dario Carugo

Anastasia Polydorou

Sara Ferri

Other B&J group:

Prof Richard Oreffo

Dr Janos Kanczler

Engineering and Physical Sciences Research Council

Prof Eleanor Stride

Dr Qiang Wu

