OPPORTUNITIES FOR IMPROVING FEED USE EFFICIENCY FOR SUSTAINABLE DAIRY PRODUCTION IN PAKISTAN

Dr. Muhammad Tariq
Assistant Professor
tariqlm@uaf.edu.pk

Department of Livestock Management
University of Agriculture Faisalabad, Pakistan
Livestock productivity in Pakistan, despite their known genetic potential, is low.
This may be attributed to many reasons, amongst which probably the most important is mal-nutrition.
Green fodders and quality feed are not available in sufficient quantities.
Fodder scarcity extreme hot months (June-July) and during cold seasons (December-January) and most of the animals are under-fed.
Straws of the cereals and other by-products are commonly used to overcome feed shortages, but don't meet the actual requirements of the animals.
Cost of commercial feeds and feed ingredients (home mix rations) are higher.
EXISTING SITUATION OF DAIRY PRODUCTION

- Buffalo and cattle are main dairy animals making 30% of the total livestock.
- These dairy animals mostly strive on low-quality feed stuffs.
- These include roughages and crop-residues with poor nutritive value resulting in poor production and reproduction performance.
- Recent investigations show that there is also issue of unjustified feeding without considering the production and physiological stages of dairy animals.
- This results in overfeeding of non-productive and under-feeding of productive-animals leading to poor feed use efficiency.
Furthermore, for the growing heifers do not have any efficient feeding system keeping in view their feeding requirements.

Proper feeding could reduce their age at puberty with significant reduction in the cost of feeding.

Similarly, early weaning of calves is very effective way without any adverse effects on growth when given free access to good quality calf starter and it could add to dairy economics.

Fodder scarcity during certain time of the year in Pakistan is another constraint toward sustainable dairying.
HOW SILAGE FITS IN DAIRY SYSTEM?
OTHER OPTIONS COULD BE

a. Drought, salinity and water logging restrict crops cultivation

b. Major portion of livestock feed is derived from grasses e.g. maize, wheat, etc. & farmers select tall growing varieties with higher seeding rates

c. Cereal's residue are conserved and stored Inappropriately
GREAT POTENTIAL IS TO FOCUS ON RANGELAND

- 51.3 m ha area (68%) of Pakistan is under rangeland
- Livestock is a major source of income and a source of livelihood
- There is huge dependency of poor on use of range & pasture resources

Responsibility for improvement of rangeland?

Feed Resources

- Crop Residue 44%
- Grazing 38%
- Fodder 14%
- Conc. 3%
MAJOR FODDER SPECIES ARE:

i. Jawar or sorgum (*Sorghum bicolor*)

ii. Maize (*Zea mays*)

iii. Millet (*Pennisetum americanum*)

iv. Berseem/Shaftal (*T. alexanrinum/T. resupinatum*)

v. Oats (*Avena sativa*)

vi. Mustard and

vii. Gowara/guar (*Cyamopsis teragonoloba*)
EXISTING YIELD GAP OF FODDER (100 – 200%)

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Crop</th>
<th>Yield at farmer field (t/ha)</th>
<th>Yield at Research Station (t/ha)</th>
<th>Yield Gap (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Berseem</td>
<td>45</td>
<td>90</td>
<td>45 (100%)</td>
</tr>
<tr>
<td>2</td>
<td>Lucern</td>
<td>40</td>
<td>90</td>
<td>50 (125%)</td>
</tr>
<tr>
<td>3</td>
<td>Oats</td>
<td>35</td>
<td>70</td>
<td>35 (100%)</td>
</tr>
<tr>
<td>4</td>
<td>Maize</td>
<td>35</td>
<td>60</td>
<td>25 (71%)</td>
</tr>
<tr>
<td>5</td>
<td>Jowar</td>
<td>40</td>
<td>60</td>
<td>20 (50%)</td>
</tr>
<tr>
<td>6</td>
<td>Bajra</td>
<td>30</td>
<td>45</td>
<td>15 (50%)</td>
</tr>
<tr>
<td>7</td>
<td>Sadabahar</td>
<td>45</td>
<td>65</td>
<td>20 (44%)</td>
</tr>
<tr>
<td>8</td>
<td>Sudangrass</td>
<td>30</td>
<td>50</td>
<td>20 (67%)</td>
</tr>
<tr>
<td>9</td>
<td>Guara</td>
<td>20</td>
<td>40</td>
<td>20 (100%)</td>
</tr>
<tr>
<td>10</td>
<td>Cowpea</td>
<td>15</td>
<td>25</td>
<td>10 (67%)</td>
</tr>
</tbody>
</table>

Mean

<table>
<thead>
<tr>
<th></th>
<th>Yield at farmer field (t/ha)</th>
<th>Yield at Research Station (t/ha)</th>
<th>Yield Gap (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34</td>
<td>60</td>
<td>26</td>
</tr>
</tbody>
</table>
IMPROVEMENT IN PRODUCTION IS POSSIBLE THROUGH

- Certified seed availability/distribution
- Selection of suitable variety for soil and area’s climate
- Balance inputs application and management
- Focus on hybrid fodder variety/species
- Cultivation of summer fodder legume
- Improve conservation practices
HOW TO MINIMIZE YIELD GAP?

1. SEED PRODUCTION: TO ENSURE SEED AVAILABILITY OF THE HIGH YIELDING VARIETIES

Local vs Improved

![Image of seeds and field](image)
2. RESOURCE MANAGEMENT OF SURPLUS FODDER

- Winter fodder (mainly legumes) summer fodders (mostly cereals)

- Hay making of winter legumes (oat, berseem etc.) and try to feed relatively balance feed round the year

- Improvement in conservation of summer fodder
3. PROMOTION OF HIGH YIELDING FODDER HYBRIDS WITH GOOD NUTRITIVE QUALITY, RESISTANCE TO INSECTS, DISEASE AND DROUGHT
4. INTRODUCTION OF SUMMER LEGUMES IN COPPING SYSTEM

- Ebony cowpea yields <600 kg DM ha\(^{-1}\) with long trailing growth habit

- *Dolichos lablab* yield <1500 kg DM ha\(^{-1}\) can intercropped in Sugarcane in early Spring

- Siratro, a good summer legume with efficient growth as sole or mix with maize, sorghum and millet
5. INTRODUCTION OF PERENNIAL WINTER FODDER SPECIES

- Encourage Lucerne cultivation e.g. S-2002 (Yield 6 to 8 cuts year-1); Sardi 10 has shown resistance at -10°C in Chitral

- Splenda sitaria: excellent grass of soft growth, resistant to hot and relatively cold climatic conditions

- Encourage vetch cultivation as dryland legume fodder
6. PROMOTE FODDER TREES FOR FIELD EDGES

- e.g. *Ailanthus altissima*,
- *Albizia*,
- *Elaeagnus angustifolia*,
- *Leucaena, Melia azedarach*,
- *Mora alba*,
- *Populus, Robinia pseudoacacia*,
- *Salix acmophylla*, etc.) in sub-humid eastern mountainous,
- wet eastern mountainous,
- and central valley plain,
- in arid area (*Atriplex sp.*).
7. PROMOTE INTER CROPPING

- Cereal (maize, sorghum, millet) + legume
- Mixed wheat with Ipil Ipil (Leucaena leucocephala), Oats + vetch
- Berseem in lucerne (line sowing)
- Lucerne + Splinda cultivation

8. Training on fodder production
FUTURE LIVESTOCK FEED CAN BE ENSURED THROUGH COORDINATION
CONCLUSIONS

- Developing innovative approaches and solutions:
- Hay and silage making to these scarcity periods
- Developments in dairy nutrition like:
 - Establishment of nutrient requirements for dairy animals
 - Feeding practices of dairy animals according to stage of lactation and production
 - Proper feeding systems for growing heifers
 - Effective milk replacer feeding for calves
- Could effectively lead to sustained dairy production in Pakistan.