

OPPORTUNITIES FOR IMPROVING FEED USE EFFICIENCY FOR SUSTAINABLE DAIRY PRODUCTION IN PAKISTAN

Dr. Muhammad Tariq Assistant Professor tariqlm@uaf.edu.pk

Department of Livestock Management University of Agriculture Faisalabad, Pakistan

BACKGROUND

- Livestock productivity in Pakistan, despite their known genetic potential, is low.
- This may be attributed to many reasons, amongst which probably the most important is mal-nutrition.
- O Green fodders and quality feed are not available in sufficient quantities.
- Fodder scarcity extreme hot months (June-July) and during cold seasons (December-January) and most of the animals are under-fed.
- Straws of the cereals and other by-products are commonly used to overcome feed shortages, but don't meet the actual requirements of the animals.
- Ocost of commercial feeds and feed ingredients (home mix rations) are higher.

EXISTING SITUATION OF DAIRY PRODUCTION

- OBuffalo and cattle are main dairy animals making 30% of the total livestock.
- These dairy animals mostly strive on low-quality feed stuffs.
- These include roughages and crop-residues with poor production and reproduction performance.
- ORecent investigations show that there is also issue of unjustified feeding without considering the production and physiological stages of dairy animals.
- This results in overfeeding of non-productive and under-feeding of productive-animals leading to poor feed use efficiency.

- Furthermore, for the growing heifers do not have any efficient feeding system keeping in view their feeding requirements.
- Proper feeding could reduce their age at puberty with significant reduction in the cost of feeding.
- Similarly, early weaning of calves is very effective way without any adverse effects on growth when given free access to good quality calf starter and it could add to dairy economics.
- Fodder scarcity during certain time of the year in Pakistan is another constraint toward sustainable dairying.

COMMON DAIRY ISSUES

HOW SILAGE FITS IN DAIRY SYSTEM?

OTHER OPTIONS COULD BE

- a. Drought, salinity and water logging restrict crops cultivation
- b. Major portion of livestock feed is derived from grasses e.g. maize, wheat, etc. & farmers select tall growing varieties with higher seeding rates
- Cereal's residue are conserved and stored Inappropriately

GREAT POTENTIAL ISTO FOCUS ON RANGELAND

- 51.3 m ha area (68%)
 of Pakistan is under rangeland
- Livestock is a major source of income and a source of livelihood
- There is huge
 dependency of poor on
 use of range & pasture
 resources

- i. Jawar or sorgum (Sorghum bicolour)
- ii. Maize (Zea mays)
- iii. Millet (Pennisetum americanum)
- iv. Berseem/Shaftal (T. alexanrinum/T. resupinatum)
- v. Oats (Avena sativa)
- vi. Mustard and
- vii. Gowara/guar (Cyamopsis teragonoloba)

EXISTINGYIELD GAPE OF FODDER (100 – 200%)

Sr. No	Crop	Yield at farmer field (t/ha)	Yield at Research Station (t/ha)	Yield Gap (t/ha)
1	Berseem	45	90	45 (100%)
2	Lucern	40	90	50 (125%)
3	Oats	35	70	35 (100%)
4	Maize	35	60	25 (71%)
5	Jowar	40	60	20 (50%)
6	Bajra	30	45	15 (50%)
7	Sadabahar	45	65	20 (44%)
8	Sudangrass	30	50	20 (67%)
9	Guara	20	40	20 (100%)
10	Cowpea	15	25	10 (67%)
Mean		34	60	26

IMPROVEMENT IN PRODUCTION IS POSSIBLE THROUGH

- Certified seed availability/distribution
- Selection of suitable variety for soil
- o and area's climate
- Balance inputs application and management
- Focus on hybrid fodder variety/species
- Cultivation of summer fodder legume
- Improve conservation practices

HOW TO MINIMIZEYIELD GAPE?

I. SEED PRODUCTION:TO
ENSURE SEED
AVAILABILITY OF THE
HIGH YIELDING VARIETIES

2. RESOURCE MANAGEMENT OF SURPLUS FODDER

- Winter fodder (mainly legumes) summer fodders (mostly cereals)
- Hay making of winter legumes (oat, berseem etc.) and try to feed relatively balance feed round the year
- Improvement in conservation of summer fodder

3. PROMOTION OF HIGHYIELDING FODDER HYBRIDS WITH GOOD NUTRITIVE QUALITY, RESISTANCE TO INSECTS, DISEASE AND DROUGHT

4. INTRODUCTION OF SUMMER LEGUMES IN COPPING SYSTEM

- Ebony cowpea yields <600 kg DM ha-1 with long trailing growth habit
- Dolichos lablab yield < 1500 kg DM ha-1 can intercropped in Sugarcane in early Spring
- Siratro, a good summer legume with efficient growth as sole or mix with maize, sorghum and millet

5. INTRODUCTION OF PERENNIAL WINTER FODDER SPECIES

- Encourage Lucerne cultivation e.g. S-2002 (Yield 6 to 8 cuts year-I); Sardi I0 has shown resistance at -I0°C in Chitral
- Splenda sitaria: excellent grass of soft growth, resistant to hot and relatively cold climatic conditions
- Encurage vetch cultivation as dryland legume fodder

6. PROMOTE FODDER TREES FOR FIELD EDGES

- o e.g. Ailanthus altissima,
- Albizia,
- Elaeagnus angustifolia,
- OLeucaena, Melia azedarach,
- ○Mora alba,
- OPopulus, Robinia pseudoacacia,
- OSalix acmophylla, etc.) in sub-humid eastern mountainous,
- o wet eastern mountainous,
- o and central valley plain,
- oin arid area (Atriplex sp.).

7. PROMOTE INTER CROPPING

- Cereal (maize, sorghum, millet) + legume
- Mixed wheat with Ipil Ipil (Leucaena leucocephala), Oats
 + vetch
- Berseem in lucerne (line sowing)
- Lucerne + Splinda cultivation

8. Training on fodder production

FUTURE LIVESTOCK FEED CAN BE ENSURED THROUGH COORDINATION

CONCLUSIONS

- O Developing innovative approaches and solutions:
- Hay and silage making to these scarcity periods
- Developments in dairy nutrition like:
- Establishment of nutrient requirements for dairy animals
- Feeding practices of dairy animals according to stage of lactation and production
- Proper feeding systems for growing heifers
- **Effective milk replacer feeding for calves**
- O Could effectively lead to sustained dairy production in Pakistan.

H N N