Exploring the Effects of Cold Plasma on Wheat Seed Surface, Germination and Growth

<u>Pia Starič^{1,*}</u>, Ita Junkar¹, Katarina Vogel–Mikuš^{1,2}, Miran Mozetič¹

¹"Jožef Stefan" Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

²University of Ljubljana, Biotechnical faculty, Večna pot 111, 1000 Ljubljana, Slovenia

* corresponding author (pia.staric@ijs.si)

INTRODUCTION:

Seeds have large economic importance all over the world. used to agricultural advantage. Many researchers have They are an essential source of minerals, proteins, starch, reported changes in hydrophilic properties of seed surface and oil reserves in the early stages of plant development and increased water uptake. Moreover, plasma-treated and growth. A high abundance of such molecules makes seeds showed improved growth, increased yield and seeds of cereals and legumes a major food source for the triggered possible plant resistance to abiotic stress such as majority of human world population. However, to gain drought and salinity. optimal yield of important crops and to avoid pests, many farmers use pesticides and agrochemicals before, during, The objective of our experiment is to identify surface or/and after harvesting of crops. A wide and common use changes after cold plasma treatment, and the influence of of such chemicals can cause pest resistance and harmful plasma treatment on seed development and early growth. effects on soil and the surrounding environment, which Different direct and indirect plasma treatments were represents a global threat to the environment. applied on seeds of two winter wheat varieties. We The non-thermal or "cold" plasma technology is becoming examined and detected changes in the chemical more and more popular in the field of agriculture. It has composition of seed coat and changes in hydrophilic properties of seed surface. Plasma treatment also affected been successfully used by scientists for the treatment of various types of seeds under specific conditions. Plasma the dynamics of water uptake of seeds, germination rate treatment has, in some cases, triggered specific responses and the root number of plants. in plant seed growth and development, which could be

Figure 1: Wheat seeds in during treatment with direct plasma mode (glow region).

METHODS:

Seed material:

Seeds of two winter wheat (*Triticum aestivum*) varieties.

Plasma treatment:

Low pressure oxygen RF plasma

- Direct treatment (glow region) for 10, 30 and 90 s
- Indirect treatment (after glow region) for 30, 90

XPS analysis:

Investigation of changes in chemical composition of seed surface.

Seed germination and growth parameters of seedlings:

Calculating final germination rate and measuring root and shoot length and root

√ number

Water contact angle measurements:

Measuring the changes in hydrophilic properties of the seed surface.

Water uptake of seeds:

Inspecting if changed chemical surface and hydrophilic properties affect water uptake of seeds.

RESULTS:

XPS analysis of seed surface revealed that plasma treatment causes a decrease in C, and increase in O (Figure 2) and N content compared to control. In contrast with untreated seeds, plasma treated (direct and indirect) seeds also displayed signals for K and Ca elements. Similar results were found in both winter wheat varieties.

Figure 2: XPS signal of oxygen content on wheat seed coats for different plasma treatments.

We measured root length, total length of root system, number of roots per plant and shoot height. Significant difference was only found in the number of roots. Ingenio wheat variety seedlings, pre-treated with cold plasma all had higher number of roots compared to control. The highest number of roots was found in seeds pretreated with indirect cold plasma treatment for 180 s).

CONCLUSIONS:

- XPS and WCA analysis showed that there is no statistically significant difference between the two wheat varieties.
- Plasma treatment changed the chemical composition of seed
- Vacuum conditions do not affect water contact angle (WCA) of seed coat. Plasma treatment, on the other hand, decreases WCA by half, and in longer treatments (90 s in direct mode or 180 s in indirect mode) the value of WCA decreased to one third of the control values in both winter wheat varieties. Indirect plasma treatment of seeds for 90 s had slightly higher WCA than direct plasma treatment for 90 s. This could be attributed to less aggressive properties of indirect plasma treatment and thus a smaller decrease in WCA.
- Plasma treatment caused an increase in the water uptake of seeds compared to control. There was no difference between plasma treatments. Bernstein wheat variety had smaller water uptake in both control and plasma treated seeds, compared to Ingenio wheat variety.
- Seed germination of plasma pre-treated seed remained the same as control for Bernstein: 96,8%; Ingenio: 100%). Lower germination rate was noticed only in seeds treated with plasma for 90 s in glow region (Bernstein: 93,2%; Ingenio: 86,6%).

surface and increased hydrophilic properties of seed coat.

- Changes in chemical composition and hydrophilic properties affected the water uptake of seeds. With more hydrophilic surface, water enters the seed easier than in untreated seed where surface is more hydrophobic.
- Plasma pre-treatment of seeds did not change the germination rate of both wheat varieties, except for the direct plasma treatment for 90 s, where germination rate was lower, compared to control.
- Plasma treatment increased the number of roots of wheat variety Ingenio compared to untreated seeds.
- The same plasma pre-treatment conditions affect the two wheat varieties differently.