OBSERVATIONS ON THE POTENTIAL OF SPIDERS AS NATURAL ENEMIES OF TRIOZA ERYTREAE (DEL GUERCIO, 1918; HEMIPTERA: TRIOZIDAE) IN THE CITRUS AGROECOSYSTEM IN PORTUGAL

Jacinto Benhadi-Marín¹, Diogo Félix Oliveira¹, Alberto Fereres² & José Alberto Pereira^{1*}

¹Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
²Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Calle Serrano 115 dpdo, 28006 Madrid, Spain.
*jpereira@ipb.pt.

INTRODUCTION

The "citrus greening disease" or huanglongbing is caused by the Gram-negative bacterium *Candidatus* liberibacter spp. One vector of HLB, the African citrus psyllid *Trioza erytreae* (del Guercio, 1918), was recorded for the first time in 2014 in mainland Spain and since then it spread throughout the Iberian Peninsula. Measures against *T. erytreae* include chemical treatments and quarantine although eradication programmes have been mostly of limited success or even failed. The biological control of *T. erytreae* has been little developed yet. Among natural enemies, spiders may encompass a promising group of predators. The <u>objective</u> of this work was to investigate the potential of spiders as natural enemies of *T. erytreae*.

Figure 1. A: Study area. B: Aerial view of the selected citrus lemon orchard.

RESULTS

- ✓ Temperature and humidity did not significantly differ between the two vertical strata. Web size was significantly higher in the lower strata (Fig. 4).
- ✓ The number of captured adults of *T. erytreae* was significantly higher in the upper strata (**Table 1**; Fig. 4).

Figure 3. Detail of a spider web holding several captured adults (red arrows) of *T. erytreae* in the canopy of a citrus orchard in northwestern Portugal.

Α

Height < 1.5m

35

30 + **SE**

25

20

15

10

Height > 1.5m

- Mean

MATERIAL AND METHODS

- A Citrus lemon orchard was selected in northwestern Portugal in the area colonized by *T. erytreae*. A total of 100 webs (50 above and 50 below 1.5m) were visually inspected throughout the orchard in August 2020 (Fig. 1).
- The family of spider, web size, number of adults of *T. erytreae* captured by each web, and the temperature and humidity were registered (**Fig. 2 & 3**).

Figure 2. Example of spiders inhabiting the orchard. A: Salticidae; B: Araneidae. Red arrow indicates the spider. Blue arrow indicates the orb-web.

Table 1. Functional group, family, number of webs inspected, and total number of adults of *T. erytreae* captured per family of spiders in a citrus orchard in northwestern Portugal at two vertical strata (above and below than 1.5 m).

Functional group	Family	Height > 1.5m		Height < 1.5m	
		Number of webs inspected (N)	Number of adults of <i>T. erytreae</i> captured (N)	Number of webs inspected (N)	Number of adults of <i>T. erytreae</i> captured (N)
Ambushers	Thomisidae	1	0	0	0
Foliage runners	Anyphaenidae	1	0	0	0
Orb-weavers	Araneidae	11	4	16	2
Space web builders	Theridiidae	32	68	0	0
Stalkers	Salticidae	5	3	0	0
Wandering sheet/tangle weavers	Linyphiidae	0	0	34	28
Total	,	50	75	50	30

Figure 4. Temperature (A), humidity (B), web size (C), and number of adults of *T. erytreae* captured by spider webs (D) registered in a citrus orchard in northwestern Portugal at two vertical strata (above and below than 1.5 m). An asterisk indicates significant differences between strata (P < 0.05).

CONCLUSIONS

Height > 1.5m

40

35

30

25

20

15

10

n

[emperature (°C) (Mean + SE]

Our results suggest that web architecture was the only factor driving the number of captured adults of *T. erytreae*. Thus, space web builders could be the most successful natural enemies of *T. erytreae* among aerial web builders.

ACKNOWLEDGEMENTS

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal), for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020) and to the project PRE-HLB—Preventing HLB epidemics for ensuring citrus survival in Europe (H2020-SFS-2018-2 Topic SFS-05-2018-2019-2020, proj. No. 817526).

