



1 Conference Proceedings Paper

# 2 Physiological characteristics of expanding and expanded

- 3 leaves of Vitis vinifera L. cv. Assyrtiko in climate change
- 4 conditions

9

26

# 5 Foteini Kolyva<sup>1,\*</sup>, Sophia Rhizopoulou<sup>1</sup>, Maria-Sonia Meletiou-Christou<sup>1</sup> and Emmanuel Stratakis<sup>2</sup>

- <sup>1</sup> Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens
   <sup>2</sup> Institute of Electronic Structure and Lase, Foundation for Research and Technology Hellas (IESL-FORTH). Nikolaou
  - <sup>2</sup> Institute of Electronic Structure and Lase, Foundation for Research and Technology Hellas (IESL-FORTH). Nikolaou Plastira 100, Voutes Heraklion Crete, Greece GR-70013
- 10 \* Correspondence: fotinikoliva@biol.uoa.gr; Tel: +30210 7274613
- 11 Published: 3 December 2020

12 Abstract: The impact of climatic change in viticulture is expected to be severe in the Mediterranean area in the future. The 13 scope of this study is the evaluation of the leaf functional and optical properties of grapevine (Vitis vinifera L.) cultivar (cv.) 14 Assyrtiko and its response to abiotic stress conditions (elevated temperature and water deficiency) caused by climatic 15 change. Plants of grapevine cv. Assyrtiko were placed in a growth chamber in the Botany Department of the National and 16 Kapodistrian University of Athens, Greece and four indoor environmental treatments were applied, concerning 17 temperature (ambient versus ambient +2 °C) and water availability (well watered versus water stressed). The 18 photosynthetic pigments (chlorophylls *a* and *b* and carotenoids) were determined as well as the leaf area, dry weight and 19 specific leaf area in expanding and fully expanded leaves of the treated plants. Using a UV/VIS spectrophotometer (Perkin 20 Elmer Lambda-950), equipped with an integrating sphere, the reflectance (R) and the transmittance (T), were measured in 21 situ, between 250nm and 2500nm wavelength, in both adaxial and abaxial leaf surfaces of the grapevine cv. Assyrtiko and 22 the absorbance (A) was calculated. It is likely that leaf chlorophyll content declined under drought and elevated 23 temperature conditions.

Keywords: chlorophyll; leaf absorbance; specific leaf area; temperature; *Vitis vinifera* L. cv. Assyrtiko; water
 deficit.

# 27 1. Introduction

28 Global warming is defined in the report of IPCC (Intergovernmental Panel on Climate Change) as an average 29 increase in combined surface air and sea surface temperatures over the globe and over a 30-year period. Various 30 climate models have been released since 1992 from IPCC reporting the impact of emissions and air pollution on 31 earth. The climatic models are constantly being updated, as different modeling groups around the world 32 incorporate higher spatial resolution and new physical processes. According to the latest report of IPCC [1], the 33 global temperature is likely to increase by 2 °C during the first half of 21st century due to climate change, and this 34 increase is projected to be in the range between 2.6 °C and 4.8 °C for the second half of 21st century, according to 35 the concentration-driven CMIP5 model simulation, based on RCP8.5 scenario. Rise of temperature will result in 36 prolonged summer drought periods, which tends to reduce plant aboveground primary productivity. Unlike for 37 temperature, where models show a general agreement about future regional changes, concerning water 38 availability different models present the same region as becoming much wetter or much drier in a warming global 39 environment.

Viticulture is also particularly sensitive to changes in climatic parameters [2], and the impact of climatic change in viticulture and native vegetation is expected to be more severe in the Mediterranean region [3,4]; the Mediterranean region is expected to have approximately 20% less precipitation by 2100 according to the RCP8.5 scenario. This change will possess a big impact on agriculture industry. Geographic locations in Greece will undoubtedly be influenced by oncoming weather conditions due to global warming, making some of the

45 cultivated plants impossible to grow in such a hot climate. The increase of the temperature due to climate change 46 has been proven to reduce the photosynthetic ability of the plants [5, 6]. Water stress linked to global warming is 47 considered to be a major inhibitor of plants' development, affecting the main functional and structural 48 characteristics of the leaves, which are exposed to the air conditions.

49 The grapevine cv. Assyrtiko is a native and well-known variety in Greece. Vitis vinifera cv. Assyrtiko is a 50 white grape variety and one of the most important varieties found in the Mediterranean basin. The young leaves 51 of Vitis vinifera cv. Assyrtiko are yellow-green with copper-colored areas, possessing smooth upper surface, and 52 pubescent abaxial surface, while the mature leaves are wedge-shaped and symmetrical [7]. It is an early-ripening 53 variety spread throughout Greece and is, in terms of quality, one of the most important indigenous varieties. It is 54 mostly cultivated on Cyclades islands of the Aegean archipelago, but mainly in the volcanic soil of Santorini 55 (Assyrtiko Santorini), which is its original terroir. Despite the observed trends of climatic factors and the 56 importance of the wine sector in the Greek economy, to the best of our knowledge there has been a lack of studies 57 on the impact of climatic change on Greek viticulture in general [8]. Also, there is little knowledge about the 58 productivity response of indigenous grapevine varieties to fluctuations of climatic parameters [9,10].

# 59 2. Experiments

60 Numerous plants of cv. Assyrtiko grapevine, were obtained from canes (approximately 50 cm) each with 4– 61 5 buds. They were grown in pots filled with a soil substrate composed of sand 50-60%, clay 20-30% and 10-20% 62 sludge. The soil pH varied from 7.5 to 8.0 and 1.5% organic substance was included. The rootstock that was used 63 was 1103P. The plants were placed in a growth chamber in the Botany Department of the National and 64 Kapodistrian University of Athens (Greece). During the first fifteen days, all plants were exposed to a temperature 65 of 14°C, 15h photoperiod and approximately 70% relative humidity [11]. After two weeks that were left to be 66 adjusted in the indoor environmental conditions, 4 groups of 20 plants were created (control, exp1, exp2 and 67 exp3). The considered abiotic factors (temperature and irrigation) were changing according to the mean monthly 68 values of temperature and precipitation of the last ten years taken from the nearest national weather station 69 (37.933 N, 23.950 E). The control group includes well-watered plants. The 2nd group of plants (exp1) includes less 70 watered plants than the control plants; in exp1 the soil water content is approximately 30% lower than that of the 71 control plants. Soil water content was gravimetrically estimated on a mass volume basis. Besides the water deficit 72 all the rest of the factors are set as the control plants. The 3rd group of plants (exp2) was translocated to another 73 chamber with elevated ambient temperature of 2°C according to the studying IPCC scenario. The plants were 74 sufficiently watered without causing runoff and the rest of the ambient conditions were set as the control. The last 75 group of plants (exp3) was also transferred to the second chamber with the elevated temperature and the plants 76 were watered less than the control (soil water content is approximately 30% lower than that of the control plants).

# 77 2.1 Estimating specific leaf area and chlorophyll content

78 The leaves were collected and were rapidly scanned in a flatbed scanner, in order to calculate the fresh leaf 79 area using ImageJ Pro, then they dried at 60°C for 48 h to a constant mass and weighed to the nearest 0.001g. 80 Specific leaf area (SLA) was calculated by the ratio of fresh leaf area per dry leaf mass (cm<sup>2</sup>g<sup>-1</sup>). The dried material 81 was then powdered, using a MFC mill (Janke and Kunkel GMBH & Co, Germany) and stored in tightly sealed 82 containers, in a cool dry and dark environment. The total chlorophyll (Chl) content was spectrophotometrically 83 determined in leaf samples according to modified acetone method [12]. Chlorophyll concentration was extracted 84 from dried, grounded leaf samples mixed, and homogenized with acetone (80% v/v) using china pestle and 85 mortar, and filtered through Whatman #2 filter paper. The chlorophyll content was measured in aliquots of the 86 leaf extracts using a spectrophotometer (Pharmacia Biotech Novaspec II) at A663.2, A646.8, A470 and the 87 absorbance readings were applied to equations published by [13], in order to determine the chlorophyll content.

# 88 2.2 In situ measurements of optical properties of fresh leaves

Leaf reflectance (R) and transmittance (T), for both adaxial and abaxial fresh leaf surfaces of grapevine cv. Assyrtiko, was measured *in situ* on attached to the plants leaves, between 250 nm and 2500 nm wavelength (bandwidth 2nm), using a UV/VIS spectrophotometer (Perkin Elmer Lambda-950), equipped with an integrating sphere and glassfibre tubes [14, 15]. The calculated leaf absorbance (pigments, water, dry matter) at a range of

wavelengths from 250 nm to 2500 nm [A = 100 - (R + T)] was used to assess the different environmental treatments of *Vitis vinifera* cv. Assyrtiko.

# 95 3. Results

## 96 3.1 Chlorophyll content

97 A significant reduction of the concentration of chlorophyll a+b, was observed between the group of control 98 and exp3 vines. The data are linearly correlated (Figure 1), concerning the expanding leaves (r<sup>2</sup>=0.957) and the 99 fully expanded leaves (r<sup>2</sup>=0.712), between exp3 plants and control plants.

- Figure 1. Relationship of chlorophyll *a+b* accumulation between control and combined treatments during a four-month period(June -September).
- 102



# 103 **3.2 Leaf absorbance**

104 The leaf absorbance (A) was calculated [A = 100 - (R + T)] for the four groups of vines by measuring 105 transmitance (T) and reflectance (R) using a UV/VIS spectrophotometer (Perkin Elmer Lambda-950), in the range 106 between 250 nm and 2500 nm assessing pigments concentration, water content, dry matter etc. It is likely that 107 there is a slight difference of the absorption in the visible wavelength range (400-700 nm) and the leaf absorption



Figure 2. Absorbance of the abaxial and the adaxial surface of expanding leaves of Vitis vinifera cv. Assyrtiko.

108 peaked in 470 nm, 647 nm and and 664 nm (Figure 2); slighty higher values were detected in the adaxial leaf 109 surface.

#### 110 3.3 Specific Leaf Area (SLA)

111 The specific leaf area was also measured between June to September. A significant difference was found 112 between the control and the treatments exp1,exp2 and exp3 (Table 1, p-value<0.05). Prolonged water stress 113 reduced significantly the total plant leaf area of vines exposed to drought (exp1), as well as the group of plants 114 exposed to the combined treatments, affecting mostly the expanding leaves (Figure 3). Furthermore, the increase 115 of temperature (exp2) resulted to the increase of the specific leaf area of the expanding leaves during the growing 116 season, varying from 195 cm<sup>2</sup> g<sup>-1</sup> to 428 cm<sup>2</sup> g<sup>-1</sup>. The SLA for the fully expanded leaves was not significantly 117 changed among the considered groups of plants during the summer months. The water-stressed plants and plants 118 exposed to the combined treatments possessed lower SLA than the control plants.

- 119
- 120 Figure 3. Measurements of SLA during a four-month period (June - September) of expanding and fully expanded leaves of
- 121 Vitis vinifera cv. Assyrtiko, exposed to control, water deficit (exp1), elevated temperature (exp2) and combined water deficit



- 122 with elevated temperature (exp3) conditions.
- 123
- 124

Table 1. P-values of SLA for expanding and fully expanded leaves of Vitis vinifera L. cv. Assyrtiko

| SLA                   | Treatment      | P- value |
|-----------------------|----------------|----------|
| Expanding leaves      | control – exp1 | 0.00002  |
|                       | control – exp2 | 0.0002   |
|                       | control – exp3 | 0.0025   |
| Fully expanded leaves | control – exp1 | 0.1286   |
|                       | control – exp2 | 0.0273   |
|                       | control – exp3 | 0.0012   |

### 125

#### 126 4. Conclusions

127 Drought and moderate increase of temperature due to climatic change are a complex syndrome affecting 128 several leaf biophysical properties that subsequently influence leaf reflectance spectra and morphological 129 characteristics. In the present study, we examined the reliability of water absorption and small increase of 130 temperature in order to assess changes in chlorophyll concentration, leaf absorbance and specific leaf area during 131 water-stress and elevated temperature. It seems likely that the combined treatment (increase of temperature and 132 water deficiency) affects the chlorophyll content in the expanding leaves. It is noteworthy though that there is no 133 significant difference of leaf absorption for all the groups of treated vines (measured from 400 to 700 nm). Finally,

134 there was a statistically significant difference of SLA between the control and the three treatments (exp1, exp2

- and exp3) more in the expanding than in the fully expanded leaves. Combining the above mentioned findings, it
- 136 is assumed that the leaves of grapevine cv. Assyrtiko were affected by water stress and increase of temperature,
- 137 and mostly by the combination of these abiotic factors. It is expected that elevated temperature and water
- 138 deficiency in the Mediterranean Basin will affect leaf properties of the cultivation of grapevine cv. Assyrtiko, in
- 139 Greece, by altering its physiological response.
- Acknowledgments: The authors would like to thank the staff in the Institute of Electronic Structure and Laser at FORTH foradvice and help during this work.
- Author Contributions: F.K., S.R. and E.S. conceived and designed the experiments; F.K. performed the experiments; F.K.
   analyzed the data; M.S.M.C. and E.S. contributed reagents and analysis tools; F.K. and S.R. wrote the paper.
- 144 **Conflicts of Interest:** The authors declare no conflict of interest.

#### 145 References

- Stocker T.F.; Qin D.; Plattner G.K.; Tignor M.; Allen S.K. Intergovernmental Panel on Climate Change. *Climate change* 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014.
- Santos J.A.; Fraga H.; Malheiro A.C. et al. A review of the potential climate change impacts and adaptation options for European viticulture. *Applied Sciences* 2020, 10(9), 3092, doi: 10.3390/app10093092.
- Gauquelin T.; Michon G.; Joffre R., et al. Mediterranean forests, land use and climate change: a social-ecological perspective. *Regional Environmental Change* 2018, 18, 623-636.
- Del Pozo A.; Brunel-Saldias N.; Engler A., et al. Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). *Sustainability* 2019, 11(10), 2769, doi: 10.3390/su11102769.
- 155 5. Allen D.J.; Ort D.R. Impacts of chilling temperatures on photosynthesis in warm-climate plants. *Trends in Plant Science* 2001, 6(1), 36-42.
- Vico G.; Way D.A.; Hurry V.; Manzoni S. Can leaf net photosynthesis acclimate to rising and more variable temperatures?
   *Plant, Cell & Environment* 2019, 42(6), 1913-1928.
- 159 7. Liakopoulos G.; Nikolopoulos D.; Klouvatou A., et al. The photoprotective role of epidermal anthocyanins and surface
   pubescence in young leaves of grapevine (*Vitis vinifera*). *Annals of Botany* 2006, 98(1), 257-265.
- Koufos G.; Mavromatis T.; Koundouras S.; Fyllas N.M.; Jones G.V. Viticulture–climate relationships in Greece: the impacts
   of recent climate trends on harvest date variation. *International Journal of Climatology* 2014, 34(5), 1445-1459.
- 163 9. Myles S.; Boyko A.R.; Owens C.L.; Brown P.J.; Grassi F. Genetic structure and domestication history of the grape.
   164 *Proceedings of the National Academy of Sciences* 2011, 108(9), 3530-3535.
- 165 10. Ponti L.; Gutierrez A.P.; Boggia A.; Neteler M. Analysis of grape production in the face of climate change. *Climate* 2018, 6(2), 20, doi: 10.3390/cli6020020.
- 167 11. Bertamini M.; Zulini L.; Muthuchelian K.; Nedunchezhian N. Effect of water deficit on photosynthetic and other
   physiological responses in grapevine (*Vitis vinifera* L. cv. Riesling) plants. *Photosynthetica* 2006, 44(1), 151-154.
- 169 12. Meletiou-Christou M. S.; Rhizopoulou, S. Leaf functional traits of four evergreen species growing in Mediterranean
  170 environmental conditions. *Acta Physiologiae Plantarum* 2017, 39(1), 34, doi: 10.1007/s11738-016-2330-4.
- 171 13. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. *Methods in Enzymology* 1987, 148, 350-382.
- 173 14. Stratakis E.; Ranella A.; Farsari M.; Fotakis C. Laser-based micro/nanoengineering for biological applications. *Progress in Quantum Electronics* 2009, 33(5), 127-163.
- 175 15. de Jong S. M.; Addink E. A.; Doelman, J. C. Detecting leaf-water content in Mediterranean trees using high-resolution
   176 spectrometry. *International Journal of Applied Earth Observation and Geoinformation* 2014, 27, 128-136.



© 2020 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).