

Modelling Polyphenol-Protein Interactions

Steve Euston

Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering & Physical Sciences, Heriot-Watt University

Protein-Polyphenol Interactions

- Evidence that protein-polyphenol interactions/complexes improve stability/bioavailability
- theoretical methods for determining binding site and binding free energy
 - Molecular simulation
 - Molecular docking

Molecular Dynamics Simulation

- Identifies binding site
 - Uses explicit solvent (water)
 - Explicit flexibility of protein and ligand
 - Can enter metastable binding states
 - Time consuming (long simulations)
 - Use accelerated MD to improve sampling
 - Meta-dynamics
 - Replica-exchange MD

Metadynamics

- atoms in the system are exposed to a bias force in the form of Gaussian potentials designed to drive the system away from its current configuration to a new one
- Over the simulation, the Gaussians build up and exclude an increasing number of conformations

 Have a system where high T simulations overcome barriers to conformational change, coupled to low T exploration of minimum energy states of those conformations

Binding Free Energy from MD

- Can determine binding free energy using various methods
 - umbrella sampling is popular
 - Potential of mean force (PMF) along a reaction coordinate
 - Analysed using weighted histograms method (WHAM)

- Number of freeware
 programs
 - Autodock/Autodock
 Vina
 - FlexX
 - Ligandfit etc
- Rigid-body or flexible docking

Docking @ home http://docking.cis.udel.edu/about/science/index.html

- Three parts to docking
 - defining the surface of the protein
 - Search algorithm (protein surface searching)
 - Scoring function (ranking of the different docked poses)

Cosconati, S., Forli, S., Perryman, A.L., Harris, R., Goodsell, D.S. and Olson, A.J., 2010. Virtual screening with AutoDock: theory and practice. Expert opinion on drug discovery, 5(6), pp.597-607.

- Three parts to docking
 - defining the surface of the protein
 - Search algorithm (protein surface searching)
 - Scoring function (ranking of the different docked poses)

Docking @ home http://docking.cis.udel.edu/abou t/science/index.html

Randomized search in the binding energy landscape

Huang, S.Y., 2014. Search strategies and evaluation in protein—protein docking: principles, advances and challenges. Drug discovery today, 19(8), pp.1081-1096.

- Three parts to docking
 - defining the surface of the protein
 - Search algorithm (protein surface searching)
 - Scoring function (ranking of the different docked poses)

- Scoring = assigning binding energy
 - Forcefield based
 - Similar to MD
 - Empirical
 - Sum of energy terms (H-Bond, electrostatic, hydrophobic)
 - fast
 - Knowledge based
 - Database of potential based on pair interaction of atoms

- Net result of docking
 - Clusters of docking poses ranked on binding energy
 - Cluster on RMSD tolerance

- Theoretical methods are useful in estimating binding site location and free energy of binding
 - Can be used for automated screening
- Methods are approximate
 - Accuracy of force-fields
 - Limitations of rigid body approximation