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Abstract: The optical properties and ecophysiological parameters of leaves of Ceratonia siliqua L. (carob), 13 
expanded in more and less polluted habitats, were compared, in order to evaluate the effect of air quality in 14 
leaf development. The accumulation of pigments (chlorophylls a and b, and carotenoids) and specific leaf 15 
area (SLA, cm2 g-1) were seasonally determined during leaf development (i.e., in nine successively grown 16 
leaves along shoots). Leaf transmittance (T) and reflectance (R) spectra for both adaxial and abaxial leaf 17 
surfaces were measured between 250 and 2500 nm wavelengths, using a UV-VIS spectrophotometer and leaf 18 
absorptance (Abs) [(Abs = 100 – (R + T)] is used to assess the effect of environmental quality of more and less 19 
polluted habitats in Athens, according to the files of the Hellenic Ministry of Environment and Energy, on 20 
carob leaf physiology. An increase, in the studied leaf parameters, was observed, for carob trees grown in the 21 
urban site. There was an increase in SLA from spring to late summer and a decrease in late autumn. Leaves of 22 
the less polluted site in the bush, regardless of the developmental stage exhibited greater water absorption, 23 
while the adaxial surface absorbed more radiation in both categories of plants. It seems likely that differences 24 
in optical properties and pigment accumulation have important implications for model simulation purposes 25 
and may be used for air pollution biomonitoring . 26 
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 29 

1. Introduction 30 

The urban environment does not usually offer to trees ideal living conditions (ground 31 
impermeable, less water available, lack of soil nutrients, toxic products and atmospheric pollutants). 32 
Air pollutants lead to a variety of adverse effects and visible injury symptoms in plant leaves. Various 33 
studies show that different plant species elicit the environmental quality in which they grow by 34 
changing their leaf anatomical and physiological properties, and thus changes in leaf properties can 35 
be used to provide a reasonably accurate assessment of habitat quality [1–4]. Pollution can directly 36 
affect plants’ physiology either via leaves exposed to air-polluted conditions or indirectly via soil 37 
acidification. Pollutants absorbed by the leaves cause changes in stomatal opening, photosynthesis 38 
and the concentration of chlorophylls, which directly affects the plant productivity [5]. The effect of 39 
the air pollutants on plant structure and function has been in the focus of interest for many 40 
investigators. It is difficult to estimate the effects of air pollutants because organisms are 41 
concomitantly exposed to a wide range of uncontrolled abiotic and biotic variables (parasites, 42 
weather conditions and complex mixture of pollutants). On the physiological and morphological 43 
point of view, the plants from polluted sites possess important phenotypical alterations changes 44 
especially regarding their colors, shapes, leaf length, width, area and petiole length. As leaves 45 
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represent the main surfaces of plant canopies where energy and gases are exchanged they are the 46 
most sensitive parts to be affected by air pollution; therefore, at various stages of leaf development, 47 
they may serve as sensors of air pollutants, indicating that plants do survive in polluted environments 48 
[6–9]. 49 

Biomonitoring is useful for the assessment of environmental impacts of pollution on living 50 
organisms including plants. The benefit of using plants as a bio-sensors is their uncomplicated 51 
deployment in field campaigns. Moreover, monitoring based bio-sensors are cheap compared to the 52 
costly physico-chemical monitoring [10–12]. 53 

Carob tree (Ceratonia siliqua L.) is being investigated as a potential bio-monitor plant for urban 54 
habitats. It is a common tree, native in the Mediterranean Basin [13], appearing in urban and 55 
suburban areas, exhibiting great morphogenetic plasticity and tolerance to drought stress conditions 56 
[14]. It requires little if any cultivation, tolerates poor soils and is long lived [15,16]. Carob tree has a 57 
great potential as a tree crop for restoring vegetation, reforestation and improving the productivity 58 
of marginal drylands. It is widely planted as an ornamental tree on the streets, considering that it 59 
reflects sunlight and reduces noise pollution. The sclerophyll carob leaves are characterized by a very 60 
thick, unilayered adaxial epidermis, while stomata are present only on the abaxial surface [17–19]. 61 
The compound leaves of carob expand within a 3-months period; then, they cease growing, and are 62 
exposed to the environmental conditions for approximately 20 months [20–22]. 63 

The objective of this research is to understand the effect of air pollution on the optical properties 64 
and on the chlorophyll content of carob leaves and develop a model that classifies an area whether it 65 
is polluted or not, by using this plant species as a bio-monitor. 66 

2. Experiments 67 

Compound leaves of two carob trees (approximately 60–70 years old), without any watering or 68 
fertilizing treatment, grown at two sites with different air quality (more polluted urban area 69 
37ο58΄17.85΄΄N, 23ο45΄28.24΄΄E, and less polluted suburban area 37ο 57΄34.35΄΄N, 23ο 47΄56.25΄΄E) were 70 
collected throughout a year. Concentrations of air pollutants were measured by the Hellenic Ministry 71 
of Environment and Energy [Table 1] [23]. The accumulation of photosynthetic pigments 72 
(chlorophylls a and b, and carotenoids) was seasonally determined during the leaf development (i.e., 73 
in nine successively grown leaves along shoots). Leaf area, dry weight and specific leaf area were also 74 
estimated. Transmittance (T), reflectance (R) and absorptance (A) spectra for both the adaxial and the 75 
abaxial leaf surfaces were measured between 250 and 2500 nm wavelength (bandwidth 2 nm), using 76 
a UV-Vis spectrophotometer.  77 

Table 1. Mean PM10 (particulate matter with a diameter less than 10 µm), NO, NO2 and O3 (µg m−3) 78 
and CO (mg m−3) values at the two experimental sites of Athens metropolitan area. 79 

 80 

2.1. Estimating Specific Leaf Area and Chlorophyll Content 81 
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Nine successively leaves grown along shoots were collected early in the morning. Following 82 
harvest (within 1 h), the leaves were scanned in a flatbed scanner to calculate the fresh area using 83 
ImageJ Pro then they dried at 60 oC for 48 h to a constant mass and weighed to the nearest 0.001g. 84 
Specific leaf area (SLA) was calculated by the ratio of fresh leaf area per dry leaf mass (cm2 g-1). The 85 
dried material was then powdered, using a MFC mill (Janke and Kunkel GMBH & Co, Germany) and 86 
stored in tightly sealed containers, in a cool dry and dark environment. The total chlorophyll (Chl) 87 
content was spectrophotometrically determined in leaf samples according to a modified acetone 88 
method [24]. Chlorophyll concentration was extracted from dried, grounded leaf samples mixed and 89 
homogenized with acetone (80% v/v) using china pestle and mortar, and filtered through Whatman 90 
# 2 filter paper. The chlorophyll content was measured in aliquots of the leaf extracts using a 91 
spectrophotometer (Pharmacia Biotech Novaspec II) at A663.2, A646.8, A470 and the absorbance 92 
readings were applied to relevant equations, in order to determine the chlorophyll content [24]. 93 

2.2. In Situ Measurements of Optical Properties of Fresh Leaves 94 

Leaf reflectance (R) and transmittance (T), for both adaxial and abaxial fresh carob leaf surfaces 95 
was measured between 250 and 2500 nm wavelength [25] (bandwidth 2 nm), using a UV/VIS 96 
spectrophotometer (Perkin Elmer Lambda-950), equipped with an integrating sphere and glassfibre 97 
tubes [26]. The calculated leaf absorptance (pigments, water, dry matter) at a range of wavelengths 98 
from 250 to 2500 nm [A = 100 – (R + T)] was used to assess the effect of environmental quality of the 99 
contrasting habitats in Athens for the carob tree. Statistical significance of the differences in optical 100 
properties will be tested for model simulation purposes. 101 

3. Results 102 

3.1. Chlorophyll Content 103 

An increase, in the studied leaf parameters, was observed, for carob trees grown in the urban 104 
site. Leaf chlorophyll content was found much higher at the more polluted site [Figure 1,2] in 105 
comparison with that of the less polluted area; in young leaves a relatively high carotenoid content 106 
was estimated. Leaf chlorophyll a+b concentration increased up to the 6th leaf (counting from the top 107 
of the shoot) for both habitats and then remained constant [Figure 1]. 108 

(a) (b) 

Figure 1. Chlorophyll content in relation to the leaf position on the stem (nine successively growing 109 
leaves, counting from the top of the shoot) during a twelve-month period: (a) less polluted site; (b) 110 
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more polluted site. The red dots refer to the mean value throughout a year. The equation of the 111 
polynomial regression line and its coefficient (R2-value) are given in the figure. 112 

A significant increase of the concentration of chlorophyll a + b, was observed during June–July 113 
in leaves grown in the suburban site in the bush, whereas in leaves grown in the urban site the 114 
maxima were obtained during August-September [Figure 2]. 115 

(a) (b) 

Figure 2. Chlorophyll content throughout a year: (a) less polluted area; (b) more polluted area. The 116 
red dots refer to the mean value of nine successively growing leaves, counting from the top of the 117 
shoot. 118 

3.2. Specific Leaf Area (SLA) (Leaf Area/Dry Weight cm2g-1) 119 

The specific leaf area (SLA) was measured throughout the year. The SLA values varied with leaf 120 
position on stem and in their responsiveness to environmental stimuli. Younger leaves exhibit lower 121 
values of SLA due to smaller leaf area and decreased dry weight. Significant difference was observed 122 
between the two research sites; suburban carob leaves possessed lower SLA in comparison with 123 
leaves growing in the urban area. There was an increase in SLA from spring to late summer and a 124 
decrease in late autumn. Additionally, a decrease of SLA was observed in mature leaves from both 125 
urdan and sub-urban sites [Figure 3]. A high SLA indicates a low dry matter investment per unit of 126 
leaf area. 127 
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 128 

Figure 3. SLA values for two carob trees growing in different habitats throughout a year. The red 129 
dotsrefer to the mean value of nine successively growing leaves, counting from the top of the shoot. 130 
The equation of the polynomial regression line and its coefficient of determination (R2-value) are 131 
given in the figure. 132 

3.3. Leaf Optical Properties 133 

The leaf absorptance (A) was calculated [A = 100 – (R + T)] by measuring Transmitance (T) and 134 
Reflectance (R) using a UV/VIS spectrophotometer (Perkin Elmer Lambda-950), in the range between 135 
300 nm and 2500 nm assessing pigments concentration, water content, dry matter etc. The absorption 136 
of light by photosynthetic pigments dominates the optical properties of green leaves in the visible 137 
spectrum (400–700 nm). Chlorophyll a (the most abundant plant pigment) absorbs light with 138 
wavelengths of 430 nm (blue) and 662 nm (red), chlorophyll b (increases the range of light) absorbs 139 
light of 453 nm and 642 nm, and carotenoids (accessory pigment) absorb light maximally between 140 
460 nm and 550 nm. A great amount of phenolic compounds were found in the plant tissue that 141 
absorb in the UV region (260–350 nm). Anthocyanins (flavonoid pigments not associated with 142 
photosynthesis) strongly absorb light between 450 nm and 550 nm (blue and green light), with a peak 143 
at about 520 nm [Table 2]. However, foliar reflection in the near-infrared plateau (NIR, 700 nm–1100 144 
nm) is affected by multiple scattering of photons within the leaf, and it is related to the internal 145 
structure, fraction of air spaces, and air-water interfaces that refract light within leaves.  146 
Water is almost transparent to visible light, whereas in the shortwave-infrared one observes two 147 
major water absorption peaks centered near 1470 nm and 1900 nm, and two minor absorption peaks 148 
centered near 970 nm and 1200 nm.  149 
The organic compounds (e.g., cellulose, hemicellulose, lignin, structural proteins) that comprise the 150 
dry matter of plant cell walls form complex assemblages, that actually strongly absorb radiation in 151 
the UV (λ ≤ 0.4 µm) and in the middle-infrared (λ ≥ 2.5 µm) region [25]. 152 

Table 2. Peak absorption of the most common plant pigments, biochemical compounds, water. 153 

Compound Absorption Peaks, Wavelengths (nm) 

Phenolic compounds 260–370 

Chlorophyll a  430 and 662 

Chlorophyll b 453 and 642 

Carotenoids 460–550 

Anthocyanins 450–550 (maximum at 520) 

Water 970 nm, 1200 nm, 1470 nm and 1900 nm (maximum) 
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Cellulose - Lignin 1400–2000 and 2000–2500 (maximum) 

Protein – Starch - Sugar  1400 and 2000–2500 (maximum) 

Leaf chlorophyll contents were found higher at the more polluted site, in comparison with that 154 
of the less polluted area [Figure 6]. Absorptance spectra showed higher reflectance efficiency in 155 
mature leaves than in young leaves and was significantly higher in more polluted sites compared to 156 
less polluted. In addition, the abaxial surfaces reflected more than the adaxial surfaces in the visible 157 
portion of the spectrum and absorb less light in both plants [Figure 4,5]. 158 
A stronger absorptance is noticed at the near infrared and shortwave infrared spectra (water 159 
absorptance) for young and mature carob leaves of the urban site. The spectral response is highest in 160 
shortwave infrared near 1950 nm [Figure 6]. Leaves of the less polluted site, regardless of the 161 
development stage, exhibit greater water absorption, while the adaxial surface absorbes more 162 
radiation in both categories of plants [Figure 6]. 163 

(a) (b) 

Figure 4. Absorptance spectrum of 5 fresh leaves [the number (No) refers to leaf position on the stem 164 
counting from the top] collected from a less polluted site: (a) the adaxial leaf surface; (b) the abaxial 165 
leaf surface. 166 

(a) (b) 
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Figure 5. Absorptance spectrum of 5 fresh leaves [(the number (No)refers to leaf position on the stem 167 
counting from the top] collected from a more polluted site: (a) the adaxial leaf surface; (b) the abaxial 168 
leaf surface. 169 

(a) (b) 

Figure 6. Absorptance profile for adaxial leaves with different stem position growing in a suburban 170 
and urban site: (a) absorptance of the 3rd leaf (No3); (b) absorptance of the 7th leaf (No7), counting 171 
from the top of the stem. 172 

4. Discussion 173 

Over the past few decades industrialization and anthropogenic activities affect the increasing 174 
concentrations of atmospheric pollutants, especially atmospheric CO2 and tropospheric O3, which 175 
play significant roles in the functioning of ecosystems. Air pollution problems are primarily gathered 176 
near urban and industrial areas and mostly have a negative impact on plants as foliar surface 177 
undergoes different structural and functional changes. Leaf construction involves a stoichiometric 178 
balance among biophysically and environmentally dependent metabolites (chlorophyll, nitrogen, 179 
water) and SLA (specific leaf area) and varies according to the environmental conditions [25]. 180 
Although high stress inhibits the synthesis and accumulation of chlorophylls, pigments seem to be 181 
stimulated by low-level stress. Increased chlorophyll concentration in response to low-level stress 182 
may equip the leaf-system with an enhanced capacity for defense against high-level (health-183 
threatening) challenges (pigment hormesis) [27]. 184 

In this study, we assess the potential of carob tree (Ceratonia siliqua L.) as a bioindicator and/or a 185 
biosensor for monitoring air pollution as it is a commonly distributed species, it can be samples easily 186 
and shows a physiological response to differences in habitat quality. The accumulation of pigments 187 
and specific leaf area, which were seasonally determined during leaf development for carob trees of 188 
two different habitats (urban, suburban) as well as leaf specular behavior, indicate a significant 189 
increase, in the studied leaf parameters for carob trees grown in the urban site. It seems likely that 190 
differences in optical properties and pigment accumulation have important implications for model 191 
simulation purposes and may be used for air pollution biomonitoring. 192 
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