

1 Conference Proceedings Paper

2 Cyclodextrins in traditional and alternative drug

3 formulations

4 Rita Ambrus*, Csilla Bartos, Gábor Katona, Tamás Kiss, Zoltán Aigner, Piroska Szabó-Révész

5 Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged,

6 Szeged Hungary, <u>ambrus.rita@szte.hu (R.A.)</u>; <u>bartoscsilla@pharm.u-szeged.hu (Cs. B.)</u>; <u>katona.gabor@szte.hu</u>

7 (G. K.); tamas.kiss@pharm.u-szeged.hu (T. K.); aigner@pharm.u-szeged.hu (Z. A.),;

8 <u>revesz@pharm.u-szeged.hu</u> (P. Sz.)

9 * Correspondence: ambrus.rita@szte.hu; Tel.: +36-208-232-139

10 Abstract: Our research interest focused on the development of preparation protocols using 11 cyclodextrins (CDs) combined with other additives to produce suitable formulations (to reach 12 local or systemic effect) to get effective therapies in different diseases. Niflumic acid, levodopa, 13 and ciprofloxacin were used as a model active ingredients for preparation of samples which could 14 be used by oral, intranasal and pulmonary applications. α -, β -, HP β CD and different kind of 15 polymer as stabilizer (Polyvinyl alcohol, PVA; Polyvinylpyrrolidone, PVP) were also applied in 16 order to change the unfavorable features and increase bioavailability of drugs. Samples were 17 produced by kneading, solvent evaporation, co-grinding and spray drying technologies. The 18 micrometric properties, structural characterization, in vitro drug release, permeability, 19 aerodynamic tests and cytotoxicity studies were applied for characterization of products. The 20 introduced case studies justified the role and efficacy of cyclodextrins in drug formulation.

Keywords: niflumic acid, levodopa, ciprofloxacin, cyclodextrins, technological protocols,
 alternative administration, physico-chemical characterization, *in vitro* tests, citotoxicity studies

24 1. Introduction

25 Efforts to innovate existing medication include the development of medicines with higher 26 selectivity of action, less toxicity and side-effects, higher stability, a more favourable 27 pharmacokinetic profile and improved patient compliance. Modern pharmaceutical technology is 28 concentrated on new drug forms which are targeted to the exact site at the appropriate time, with 29 maximum efficiency and with reduced side-effects. Cyclodextrins (CDs) have a wide range of 30 applications in different field of drug formulation due to their complexation ability which could 31 improve the solubility, stability, safety and bioavailability of drug molecules. The application of 32 natural and chemically modified CDs could present inclusion complexes by different technological 33 methods. CDs are able to extend the function of pharmaceutical additives therefore their 34 application become effective and valuable tool for development of drug delivery systems during 35 different administration routes [1].

Niflumic acid (NIF), an anthranilic acid derivative, is a frequently used anti-inflammatory drug, which also has a weak analgetic effect. It is primarily used to treat different forms of rheumatism, e.g. rheumatoid arthritis and arthrosis, and to decrease other inflammatory phenomena. It has some side-effects, such as nausea or vomiting. In cases of stomach ulcer, it may only be used under medical control. Therefore, our aim was to increase its solubility and dissolution rate by applying different formulation methods using CDs for per os application [2, 3].

42 Levodopa (LEVO) as the gold standard in the treatment of Parkinson's disease is usually 43 administrated orally but its bioavailability is low. The oral administration of LEVO alone and in

The 1st International Electronic Conference on Pharmaceutics, 1 - 15 December 2020

44 combination are available in the market in immediate-release tablets and capsule dosage forms. Its 45 alternative administration could offer a possibility of drug transport to the central nervous system 46 (CNS), by passing the first-pass metabolism. Liquid formulations of this drug, such as nasal drops 47 or sprays, cannot be prepared because of the fast degradation, therefore it is necessary to make a 48 nasal powder. Some excipients can open the tight junctions between epithelial cells in the nasal 49 cavity, e.g. PVA, PVP, α -, β -, γ - CDs and their derivatives. Besides, nasal powders have micronized 50 drug particles with high cohesive property, therefore e.g. binary systems should be prepared with 51 different excipients to decrease the cohesive and adhesive forces and to increase the flowability of 52 the powder mixture. Beyond opening the tight junctions CD microspheres could be good 53 mucoadhesive excipients for nasal delivery. Hydrophilic drugs like LEVO have low nasal 54 absorption in humans, which can be increased with CD. The aim of our work was the development 55 of a LEVO containing nasal powder form as a binary system by dry co-grinding process. In 56 preformulation study the physical and chemical interactions between LEVO and the excipients (e.g. 57 CD) were examined because of the high mechanical stress during grinding, and the dissolution 58 extent of LEVO was also controlled [4, 5].

59 The most common treatment for respiratory infection involves oral or parenteral 60 administration of high doses of single or combined antibiotics which can show undesirable side 61 effect because of high systemic bioavailability. Pulmonary dosage form of antibiotics can increase 62 patient comfort and compliance, causing promoted treatment outcome. Dry powder inhalation 63 systems (DPI) are formulated by micronized drug particles with aerodynamic particle sizes of less 64 than 5µm using particle engineering.technologies. Ciprofloxacin has potent and effective activity 65 against a wide range of Gram-positive bacteria and against most Gram-negative microorganisms 66 and it is often used in the treatment of inhalation anthrax and other lung infections. Our goal was 67 therefore to develop a carrier-free co-spray-dried DPI product containing the board spectrum 68 antibiotic ciprofloxacin and excipients e.g. CD [6, 7].

69

70 2. Experiments

71 2.1. Materials

72 Nifluminic acid (NIF) 2-[[3-(trifluoromethyl)phenyl]amino]-3-pyridinecarboxylic acid (G. 73 Richter Ltd., Hungary). Polyvinylpyrrolidone (PVP): K-90, Mw: 1 300 000 (Pharmacopoeia 74 Hungarica 7th Edition), Levodopa (LEVO), α -cyclodextrin (α -CD), were obtained from 75 Sigma-Aldrich. Ciprofloxacin (CIP), a fluoroquinolone-type antibiotic was supplied by Teva 76 Pharmaceutical Works Ltd. (Debrecen, Hungary). Polyvinyl alcohol 3-88 (PVA), a water-soluble 77 synthetic polymer as a coating material was purchased from BASF (Cologne, Germany). The amino 78 acid l-leucine (LEU) was obtained from Hungaropharma Ltd. (Budapest, Hungary). 79 Hydroxypropyl beta-cyclodextrin (HPBCD), a chemically modified cyclic oligosaccharide was 80 donated by Cyclolab Ltd. (Budapest, Hungary).

81 2.2. Sample preparation methods

82 Cyclodextrin binary and ternary complexes were prepared by using NIF, CD and PVP. The 83 products were prepared in four different mole ratios (NIF:CD mole ratio = 2:1, 1:1, 1:2 and 1:3). 84 Physical mixtures (PMs): The plain drug and CD were mixed in a mortar and sieved through a 100 85 µm sieve. Two types of solvent method were applied (kneading and ultrasonication). Kneaded 86 products (KPs): PMs of the drug and HP- β -CD were mixed with the same mass quantity of a 87 solvent mixture of ethanol + water (1:1). They were kneaded until the bulk of the solvent mixture 88 had evaporated. The ultrasonicated systems (USs): the PMs were dissolved in 50 % ethanol, placed 89 in the Grant ultrasonic bath XB2 (Keison, England) for 1 h, dried and pulverized. The 90 three-component products were prepared in four different mole ratios (NIF:HP- β -CD mole ratio = 91 2:1, 1:1, 1:2 and 1:3), in all cases containing 15% (w/w) PVP K-90. Ternary physical mixtures

92 (PMs+PVP): NIF, HP- β -CD and PVP were mixed in a mortar and sieved through a 100 μ m sieve.

93 Ternary kneaded products (KPs+PVP): PMs+PVP were mixed with the same quantity of a solvent 94 mixture of ethanol + water (1:1), and were kneaded until the bulk of the solvent mixture had

94 mixture of ethanol + water (1:1), and were kneaded until the bulk of the solvent mixture had 95 evaporated. After this, they were dried at room temperature and then at 105 °C, and were

96 pulverized and sieved through a 100 μ m sieve.

97 For the preparation of LEVO-CD binary mixtures, a planetary ball mill (PM 100 MA, Retsch 98 GmbH, Haan, Germany) was used. Co-grinding was executed to reach the target range of particle 99 size (5-40 μm). Two process parameters were changed: grinding time and the LEVO:excipient ratio, 100 and their effect on the average particle size was investigated. Grinding was carried out for 60 min, 101 at 400 rpm in a 50-mL milling chamber with ten stainless steel milling balls with a diameter of 8 102 mm. Sampling was performed in every 15 minutes to determine the optimal grinding time. Finaly 103 the LEVO-excipient mass ratio was 30:70 as optimized formulation.

By the preparation of dry powder inhalers a small amount of ethanol (10%)in an aqueous solution is known to decrease the particle size because of its fast evaporation during spray drying (Büchi Mini Dryer B-191, BÜCHI Labortechnik, Flawil, Switzerland) could effect the final size. Therefore, the feed solution was prepared by dissolving 1 gram of CIP and different excipients at different concentrations in an aqueous solution containing 50 ml of 10% of ethanol. CIP_CD (1g_0.9g) and CIP_LEU_PVA_CD (1g_0.4g_0.2 g_0.9g) were the investigated samples.

110 2.3. Investigations

111 The particle size distribution and morphology were determined with laser diffraction (using 112 Malvern Mastersizer Scirocco 2000; Malvern Instruments Ltd., Worcestershire, UK) and scanning 113 electron microscopy (Hitachi S4700; Hitachi Scientific Ltd., Tokyo, Japan). The wettability was 114 investigated using contact angle system (Dataphysics OCA 20, Dataphysics Inc., GmbH, Germany). 115 Physico-chemical properties were analyzed with differential scanning calorimetry (Mettler Toledo 116 DSC 821e thermal analysis system with STAR^e thermal analysis program V6.0 (Mettler Inc., 117 Schwarzenbach, Switzerland) and X-ray powder diffraction (Bruker D8 Advance diffractometer 118 (Bruker AXS GmbH, Karlsruhe, Germany). In vitro drug release was carried out by modified paddle 119 method in different dissolution media. Aerodynamic properties have been tested in vitro using 120 Andersen Cascade Impactor (Copley, England). A modified horizontal diffusion cell was used for 121 the in vitro penetration test. For cell culture A549 cells (ATCC, USA), a human immortalized 122 alveolar type II like lung epithelial cell line, were cultured. A549 cells (passage number \leq 35) were 123 grown in Dulbecco's modified Eagle medium supplemented with 10 % fetal bovine serum (FBS, 124 Pan Biotech, Germany) and 50 µg/mL gentamicin, in a humidified incubator with 5% CO₂ at 37°C. 125 Kinetics of lung epithelial cell reaction to treatment was monitored by impedance measurement at 126 10 kHz (RTCA-SP instrument; ACEA Biosciences, San Diego, CA). Impedance measurement is a 127 label-free, real time, noninvasive method, and correlates linearly with adherence, growth, number,

- 128 and viability of cells.
- 129 **3. Results**
- 130 In the results part the most important results of the presented case studies are introduced.
- 131 3.1. Binary and ternary CD systems for per os application

132 The following preparation protocol was used and the products were compared with each other 133 (Fig. 1). The solubility-increasing effects of the available CD derivatives were determined under 134 uniform conditions. It was found, that the solubility of NIF was always increased by the CDs, and 135 especially for NIF with HP-β-CD to 2.5-fold. The wettability study indicated that the products had a

The 1st International Electronic Conference on Pharmaceutics, 1 - 15 December 2020

The 1st International Electronic Conference on Pharmaceutics, 1 - 15 December 2020

136 much hydrophilic character comparing with NIF. Significantly lower wetting angles were 137 measured for all samples, the decrease ranging was from 71° to 26°. There was a parallel result for 138 the wettability relative to the saturation concentration in water. Different samples were examined 139 as regards their dissolution with the rotating basket tester in simulated gastric media and simulated 140 intestinal media (SIM). The dissolution was better in SIM for all samples, except the binary kneaded

- 141 products. The intensity of the dissolution depended on the preparation method. The PMs and the
- 142 USs always displayed prolonged dissolution profiles. The addition of PVP and the use of an organic
- solvent by kneading, such as ethanol led to rapid dissolution. It was also typical that the saturation
- 144 concentration was reached in 15–20 min containing CDs. The dissolution rate increase was
- 145 1.5–2.5-fold for binary and ternary systems with CD.

146

147 **Figure 1.** The schematic figure for the preparation of CD containing samples

148

149 3.2. Levo and CD containing system for nasal powder formulation

In this study different LEVO-CD binary mixtures were developed for nasal application
using a planetary ball mill. Table 1. presents the optimized mass ratio and process parameters
Different LEVO-excipient mass ratios were co-ground (10:90; 30:70; 50:50; 70:30; 90:10). It could
be seen that micronization was achieved after 15 min grinding time.

154

Table 1. Characterization of LEVO-CD co-grinded products

		d(0.5) value of physical mixture (μm)	Properties of optimized	
LEVO:excipient	Optimized mass ratio		co-ground product	
			Grinding	d(0.5)
			time (min)	(µm)
LEVO:α-CD	70:30	27.29	15	6.71

155 It was found that the co-grinding process decreased the degree of crystallinity of LEVO in 156 the ground products compared to the unground physical mixtures. This change can be related 157 to the nature of the excipients. The α -CD had an intensive crystallinity degree reducing effect, 158 as co-grinding agents. *In vitro* dissolution studies revealed that α -CD enhanced the dissolution 159 of LEVO compared to LEVO powder (Table. 2). It can be explained with the good solubility of 160 α -CD also. Hydrophilic drugs like LEVO have low nasal absorption in humans, which can be 161 increased with CD.

162 **Table 2.** Released concentration after 30 min The 1st International Electronic Conference on Pharmaceutics, 1 - 15 December 2020

Products	t30min (%)
Raw LEVO	46.91
LEVO:α-CD=70:30	69.58

163

164 3.3 Dry powder inhalation sysems(DPIs) using CIP with CD and other additives

165 This study has created the ability of development of DPI and spray-drying techniques to 166 produce microparticles containing CIP for pulmonary drug delivery. The final microparticles, 167 developed in green technology, ensures the respirable particle size range (3-5 μm), with spherical 168 morphology. The formulated microparticles as innovative product were tested for the stability in 169 stress and accelerated test in long term (6 months). Since the microparticles in the dry powder 170 system are amorphous and do not contain any stabilizer, the results of this test are very important. 171 The stable product may be considered suitable for scaled-up processes and pulmonary application.

172

173

Figure 2. The schematic figure for the preparation of CD containing samples

174

Following the physicochemical stability testing, it was shown that from five different types of microparticles three presented acceptable stability (CIP_SPD, CIP_LEU_SPD, CIP_CD_SPD, CIP_LEU_PVA_CD_SPD). From cytotoxicity view microparticles contain CIP without excipient and CIP with LEU or combinations of excipients did not change the impedance of A549 lung epithelial cell monolayers in the range of 1-300 μ M concentrations, indicating no cellular toxicity. Fig. 3 illustrates kinetics of lung epithelial cell reaction treated with ciprofloxacin at 1, 10, 30, 100 and 300 μ M alone or its formulations prepared with LEU, CD and PVA for 48 hours.

182

185 Before storage, the fine particle fraction (FPF) of microparticles containing CD was 58.54 ± 1.1 %, 186 although after storage the FPF values of the samples decreased because of the fine particle 187 aggregation. This is associated with the increased particle size and retaining the amorphous 188 structure for 3 months. CIP_PVA_CD_LEU_SPD containing microparticles did not keep the FPF 189 value, which could be explained by the microparticles losing their spherical morphology. In 190 conclusion it was found that soluble CIP consisting of PVA and CDs physiochemical property 191 decline during storage. Aggregation was minimized in formulations with LEU (Table 3).

Table 3. Fine particle fraction values predict the lung deposition

Samplas	FPF (%)	
Samples	0. day	
CIP_SPD	31.68±1.4	
CIP_CD_SPD	45.93±1.4	
CIP_PVA_CD_LEU_SPD	58.54±1.1	

193

194 4. Conclusions

195 In consequence of the poor water-solubility of the pharmaceutical ingredient, NIF, our aim was 196 to increase its solubility and dissolution rate by applying several technological methods. This work 197 involved a preformulation study to introduce the technological possibilities e.g. in the field of a 198 supergeneric formulation. The solubility-increasing effects of the available CD derivatives were 199 determined under uniform conditions. It was found, that the solubility of NIF was always increased 200 by the CDs, and especially for NIF with HP- β -CD to 2.5-fold. Different preparative mole ratios and 201 three methods (PMs-physical mixtures, KPs-kneaded products and USs-ultrasonicated products) 202 were applied to form complexes, and 15 m/m% PVP K-90 was used to prepare ternary systems The 1st International Electronic Conference on Pharmaceutics, 1 - 15 December 2020

(PMs+PVP and KPs+PVP) to improve the solubility. Using CD, we suggested the ultrasonicated
 binary and the kneaded ternary 1:3 products to prepare per os or semisolid dosage forms for relief
 of different pain and treatment rheumatism. In these cases the permeability and wettability
 properties of the drug are very useful.

207 The optimized co-grinding process parameters (LEVO:excipient ratio and grinding time) 208 resulted in the desired particle size range (5-40 μ m) of nasal powder formulation. Chemical 209 degradation of LEVO in the products was not detected even after the accelerated stability test. The 210 dissolution rate of LEVO was increased with α -CD. This study can be a starting-point for 211 development of an innovative nasal formulation of LEVO for treatment Parkinson's disease.

The formulated DPI using CD and CIP illustrated a novel possibility in treatment of respiratory tract infection and the innovative technology and product present to be of great potential in pulmonary drug delivery systems. We concluded that in the presence of CD, a stable, non-toxic formulation could be reached with high lung deposition.

216

Acknowledgments: This work was supported by the Ministry of Human Capacities, Hungary grant (20391 3/2018/FEKUSTRAT) and GINOP 2.2.1-15-2016-00007 Project.

Author Contributions: R. A., Z. A. and P. R. conceived and designed the experiments; Cs. B. and T. K. and G.
K. performed the experiments; R. A., Cs. B., G. K. and T. K. analyzed the data; R. A. wrote the paper.

221 Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the 222 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and 223 in the decision to publish the results.

224

225 References

226

- Arun, R.; Ashok, K C. K.; Sravanthi, V. V. N. S. S.; Cyclodextrins as Drug Carrier Molecule: A Review. *Sci Pharm.* 2008, 76: 567–598.
- 229 2. Kata, M.; Ambrus, R; Aigner, Z. Preparation and investigation of inclusion complexes containing
 230 nifluminic acid and cyclodextrins. *J. Incl. Phenom.* 2002, 44: 123–126.
- Ambrus, R; Aigner, Z., Catenacci, L.; Bettinetti, G.; Szabó-Révész, P.; Sorrenti, M. Physico-chemical characterization and dissolution properties of nifluminic acid-cyclodextrin-PVP ternary systems. *J Therm Anal Calorim.* 2011, 104: 291-297.
- Bartos, C.; Pallagi, E.; Szabó-Révész, P.; Ambrus, R.; Katona, G.;, Kiss, T.; Mernaz, R.; Csóka, I.
 Formulation of levodopa containing dry powder for nasal delivery applying the quality-by-design approach. *Eur J Pharm Sci*. 2018, 123:475-483.
- Ugwoke, M. I.; Agu, R. U.; Verbeke, N.; Kinget, R. Nasal mucoadhesive drug delivery: background,
 applications, trends and future perspectives. *Adv Drug Deliv Rev.* 2005, 57(11):1640-1665.
- Boraey, M. A.; Hoe, S.; Sharif, H.; Miller, D. P.; Lechuga-Ballesteros, D.; Vehring, R. Improvement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol-water cosolvent system. *Powder Technology* 2013, 236: 171–178.
- Pitha, J.; Milecki, J.; Fales, H.; Pannell, L.; Uekama, K. Hydroxypropyl-β-cyclodextrin: preparation and characterization; effects on solubility of drugs. *Int J Pharm.* 1986, 29: 73-82.

© 2020 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).