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Traditional agriculture research programs have used classical breeding and molecular biology 

approaches for crop improvement. Besides, they are proved inadequate to deal collectively 

with a major number of problems. High throughput sequencing has shown a way towards 

overcoming those barriers along with storing and evaluating various big scale datasets on 

experimental basis. Artificial intelligence with Machine and deep learning techniques uses a 

training dataset as a calibrator for performing identification, classification, quantification and 

prediction. Different algorithms can interpret the same data to different desirable outputs; the 

output includes a simpler solution for the complex problems in link with a given dataset. Its 

application has moved research towards less biased and high precision results which are 

extensively accepted on a global level
 [1-3]

.  

The sophisticated application of AI and machine learning is prevalent in genomics, 

transcriptomics, proteomics, metabolomics and systems biology
[4]

. The approach of 

Interpreting a given dataset with deep learning algorithms mentioned in figure 1 has been 

used for predicting translational initiation site recognition
[5]

,signal peptide prediction
[6]

, 

subcellular localisation
[7]

, plant effectors
[8]

, fungal effectors
[9]

, promoter recognition
[10]

, 

mRNA based alternative splicing[11], m5cap[12], poly A site[13], RNA editing[14], epistatic 

state[15], gene[16] and protein function and interaction[17],mutational analysis[18], epigenetic 

interaction
[19]

, gene expression analysis
[20]

, transcription factor binding
[21]

, Chromatin 

signature
[21]

, gene–environment interactions
[22]

, SNP detection for QTL and interactome 

analysis[23-25]. 

Single nucleotide polymorphism is one of the major molecular markers for the indication of 

genetic diversity for crop improvement programs. It is majorly used for the assessment of 

genomic breeding values. Approaches like NGS are used to locate SNP in economic 

improvement traits, for the easy and early domestication of beneficial crops. However, the 

error-prone fashion of the available NGS analysis tools is still a big concern which can lead 

to false-positive results. Machine learning methods have paved a way towards more precise 

SNP screening from the sequenced data available in large natural population [23-25]. Fig.1 

depicts the available machine learning algorithm used in SNP detection. In addition to it, 

“Integrated SNP Mining and Utilization” (ISMU) Pipeline
 [26]

 and “SNP machine learning” 

(SNP‐ML)
[27]

 are two of the ML based models presently in use for SNP based QTL analysis. 

Use of molecular marker datasets with machine learning algorithm holds promising results in 

genetic analysis and hybrid breeding
 [28]

. 

 



 

Figure 1- Machine Learning tools in Plant Biology. 
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