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Abstract: Genotoxic bystander signals released from irradiated human mesenchymal stromal cells 

(MSC) may induce radiation-induced bystander effects (RIBE) in human hematopoietic stem and 

progenitor cells (HSPC) potentially causing leukemic transformation. Although the source of 

bystander signals is evident, the identification and characterization of these signals is challenging. 

Here, RIBE were analyzed in human CD34+ cells cultured in distinct molecular size fractions of 

medium conditioned by 2 Gy irradiated human MSC. Specifically, γH2AX foci (as a marker of DNA 

double-strand breaks) and chromosomal instability were evaluated in CD34+ cells grown in 

approximate (I) < 10 kDa, (II) 10–100 kDa and (III) > 100 kDa fractions of MSC conditioned medium 

and un-/fractionated control medium, respectively. Hitherto, significantly increased numbers of 

γH2AX foci and aberrant metaphases were detected in CD34+ cells grown in the (II) 10–100 kDa 

fraction when compared to (I) < 10 kDa or (III) > 100 kDa fractions or un-/fractionated control 

medium. Furthermore, RIBE disappeared after heat inactivation of medium at 75 °C. Taken 

together, our data suggest that RIBE are mainly mediated by the heat-sensitive (II) 10–100 kDa 

fraction of MSC conditioned medium. We postulate proteins as RIBE mediators and in-depth 

proteome analyses to identify key bystander signals, which is fundamental for the development of 

next-generation anti-leukemic drugs. 
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1. Introduction 

Genotoxic bystander signals released from irradiated human mesenchymal stromal cells (MSC) 

may induce radiation-induced bystander effects (RIBE) in non-irradiated human hematopoietic stem 

and progenitor cells (HSPC) potentially initiating myeloid neoplasms (MN). In the 2016 WHO 

classification, MN that arise after irradiation therapy are referred to as therapy-related MN (t-MN) 

[1]. As t-MN are characterized by high-risk genetic alterations [2,3] and a particularly worse 

prognosis [4,5], novel therapeutic strategies are urgently needed. 

Generally, RIBE describe ‘out-of-field’ effects of irradiation in non-irradiated cells that are 

comparable to effects in irradiated cells. RIBE may emerge as DNA damage (e.g., increased γH2AX 

foci, gene mutations, chromosomal aberrations, micronuclei), cell death (e.g., apoptosis, necrosis) and 

induction of cell survival mechanisms (e.g., adaptive response, DNA repair) [6–9]. Bystander signals 

are assumed to be initiated in irradiated cells by calcium fluxes [10] and mitochondrial metabolites 

[11–13]. Then, small molecules like nitric oxide (NO) [14], reactive oxygen species (ROS) [15], nuclear 

factor-kappa B (NF-kappa B) [13], and transforming growth factor beta-1 (TGFbeta-1) [16,17] may 

pass through cell membranes and gap junctions from the intracellular towards the extracellular space 

[18,19]. Hereupon, the bystander signals might be transmitted to non-irradiated cells that are referred 

to as bystander cells. Finally, ROS generated by NADH oxidases [20] and distinct RIBE mediators 

may be induced in affected bystander cells, thereby potentially initiating malignant transformation. 

The analysis of bystander signals is a cutting-edge field in leukemia research. Here, irradiated 

healthy human MSC and healthy human CD34+ cells from the same donors were investigated in an 

in vitro model system that enables characterization of genotoxic signaling factors. Specifically, 

molecular size fractions of MSC conditioned medium of approximate (I) < 10 kDa, (II) 10–100 kDa 

and (III) > 100 kDa molecular weight were used for culture of CD34+ cells of the same donors. 

Afterwards, RIBE were analyzed in exposed CD34+ cells in terms of DNA damage and chromosomal 

instability (CIN). The data may provide important information on the fraction of interest in MSC 

conditioned medium to be analyzed most profitable by in-depth proteome analysis for the 

identification of key bystander signals, which might contribute to the development of next-

generation anti-leukemic drugs. 

2. Experiments 

2.1. Preparation of Human Femoral Heads 

This study was approved by the Ethics Committee II, Medical Faculty Mannheim, Heidelberg 

University (no. 2019-1128N). Procedures were performed in accordance with the local ethical 

standards and the principles of the 1964 Helsinki Declaration and its later amendments. Written 

informed consent was obtained from all study participants. Femoral heads were collected from 6 

patients with coxarthrosis (1 female, 5 males, mean age: 68 years) undergoing hip replacement. 

2.2. Isolation of Human MSC 

Bones were broken into fragments and incubated for 1 h at 37 °C in phosphate-buffered saline 

(PBS) supplemented with 1 mg/mL collagenase type I (Thermo Fisher, Waltham, US). Supernatants 

were filtered in a cell strainer with 100 µm nylon mesh pores (Greiner Bio-One, Kremsmünster, 

Austria). Afterwards, bone fragments retained in the cell strainer were transferred into StemMACS 

MSC Expansion Media XF (Miltenyi Biotec, Bergisch Gladbach, Germany) supplemented with 1% 

penicillin/streptomycin. Then, adherent MSC were expanded in T175 flasks in a humidified 5% CO2 

atmosphere at 37 °C and passaged at 80% confluency.  

2.3. Isolation of Human CD34+ Cells 

CD34+ cells were isolated from bone marrow mononuclear cells by Ficoll density gradient 

centrifugation and magnetic-activated cell sorting using CD34 antibody-conjugated microbeads 

(Miltenyi Biotec). CD34+ cells were grown in StemSpan SFEM II medium (Stemcell Technologies, 
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Vancouver, Canada) supplemented with StemSpan Myeloid Expansion supplement (SCF, TPO, G-

CSF, GM-CSF) (Stemcell Technologies) and 1% penicillin/streptomycin in a humidified 5% CO2 

atmosphere at 37 °C. 

2.4. Preparation of Fractions of MSC Conditioned Medium 

MSC were grown in T175 flasks until reaching 80% confluency. MSC were rinsed in PBS and 

fresh StemSpan SFEM II medium was added. Afterwards, MSC were 2 Gy irradiated by 6 MV x-rays 

in a Versa HD linear accelerator (Elekta, Stockholm, Sweden), while control MSC were not irradiated. 

MSC conditioned medium and control medium were obtained from irradiated and non-irradiated 

MSC, respectively, after 4 h incubation at 37 °C. The collected medium was centrifuged (1.200 rpm, 

10 min) and supernatants were filtered through 10 kDa molecular weight cut-off (MWCO) 

ultrafiltration centrifugal filter units (Amicon Ultra, Merck, Darmstadt, Germany) to obtain (I) 

approximate < 10 kDa fractions of MSC conditioned and control medium, respectively. Next, the 

supernatant above the filter was adjusted with fresh medium to the original volume and filtered 

through 100 kDa MWCO ultrafiltration centrifugal filter units to obtain (II) approximate 10–100 kDa 

fractions of MSC conditioned and control medium, respectively. Finally, the supernatant above the 

filter was adjusted with fresh medium to the original volume and then contained (III) approximate > 

100 kDa fractions of MSC conditioned and control medium, respectively. The distinct fractions (I)–

(III) of MSC conditioned and control medium were stored at − 20 °C. 

2.5. Heat Inactivation of MSC Conditioned and Control Medium 

Heat inactivation of RIBE mediators in un-/fractionated MSC conditioned medium and un-/ 

fractionated control medium was performed by incubation at 75 °C for 20 min. 

2.6. RIBE Analysis 

RIBE were analyzed in CD34+ cell samples (6 patients) at day 6 after culture for 3 days in native 

medium followed by culture for 3 days in un-/fractionated MSC conditioned medium or in un-/ 

fractionated control medium, respectively. In addition, experiments with CD34+ cell samples (2 

patients) were performed with MSC conditioned medium after heat inactivation.  

2.7. Immunofluorescence Staining of γH2AX  

Immunofluorescence staining of γH2AX was performed in CD34+ cells using a JBW301 mouse 

monoclonal anti-γH2AX antibody (Merck) and an Alexa Fluor 488-conjugated goat anti-mouse 

secondary antibody (Thermo Fisher) [21,22]. At least 50 nuclei were analyzed in each sample. 

2.8. Cytogenetic Analysis 

Cytogenetic analysis of G-banded chromosomes was performed in CD34+ cells according to 

standard procedures [23]. At least 25 metaphases were analyzed in each sample following the ISCN 

2016 [24]. Sporadic chromosomal alterations (e.g., chromatid breaks (chtb), chromosome breaks, 

trisomy) were included in the karyotype (non-clonal events) when detected in at least one metaphase. 
Because tetraploid/octaploid metaphases were detected at low frequency in CD34+ cells grown in 

control medium as well, they were only included in karyotypes in case of clonality (tetraploidy 

and/or octaploidy in two or more metaphases) according to the ISCN 2016. 

2.9. Statistical Analysis 

Statistical analysis was performed with SAS software, release 9.4 (SAS Institute, Cary, US). For 

quantitative variables, mean values and standard deviations were calculated. Categorical factors are 

presented with absolute and relative frequencies. In order to compare more than two groups, 

Kruskal-Wallis tests were performed. For pairwise group comparisons, exact Wilcoxon two-sample 

tests were used. In general, test results with p < 0.05 was considered as statistically significant. 

http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytogenetics
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytogenetics
http://www.sciencedirect.com/topics/medicine-and-dentistry/chromosome
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3. Results 

3.1. Evaluation of Cell-Free MSC Conditioned Medium 

In order to prevent a transfer of MSC by MSC conditioned medium to the CD34+ cell cultures 

only centrifuged supernatants were used. In addition, (i) microscopic evaluation of supernatants in 

a Neubauer counting chamber, (ii) sterile filtration of supernatants and (iii) cytogenetic cross-over 

experiments using sexually divergent CD34+ cells and MSC could exclude transfer of MSC to the 

CD34+ cell cultures in our experiments. 

3.2. DNA Damage in Human CD34+ Cells 

γH2AX foci were analyzed in human CD34+ cell samples (4 patients; ∑ 32 samples) expanded 

for 3 days in native medium followed by culture for 3 days in un-/fractionated MSC conditioned or 

un-/fractionated control medium, respectively (Figure 1a). Increased numbers of γH2AX foci (general 

p = 0.0068 [Kruskal-Wallis test]; pairwise comparison each p = 0.0286 [Wilcoxon two-sample test]) 

were detected in CD34+ cells grown in the (II) 10–100 kDa fraction of MSC conditioned medium (0.67 

± 0.10 γH2AX foci per CD34+ cell; mean ± standard error of mean) when compared to numbers of 

γH2AX foci in CD34+ cells grown in (I) < 10 kDa (0.19 ± 0.01 γH2AX foci per CD34+ cell) and (III) > 

100 kDa (0.23 ± 0.04 γH2AX foci per CD34+ cell) fractions or in un-/fractionated control medium (0.12 

± 0.01 γH2AX foci per CD34+ cell). Since γH2AX foci are a marker of DNA double-strand breaks 

(DSB), our findings suggest that DNA damage signaling factors mainly localize in the (II) 10–100 kDa 

fraction of MSC conditioned medium.  

 

Figure 1. Radiation-induced bystander effects in CD34+ cells grown in distinct molecular size 

fractions of medium conditioned by 2 Gy irradiated mesenchymal stromal cells (MSC) and un-/ 

fractionated control medium. (a) γH2AX foci levels in CD34+ cells grown in (I) < 10 kDa, (II) 10–100 

kDa and (III) > 100 kDa fractions of MSC conditioned medium and in un-/fractionated control 

medium. * p = 0.0068 [Kruskal-Wallis test] and p = 0.0286 [Wilcoxon two-sample test] when compared 

to numbers of γH2AX foci in CD34+ cells grown in (I) < 10 kDa and (III) > 100 kDa fractions or in un-

/fractionated control medium. (b) Exemplary tetraploidy of a CD34+ cell grown in the (II) 10–100 kDa 

fraction of MSC conditioned medium.
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Table 1. Radiation-induced bystander effects in CD34+ cells grown in un-/fractionated medium conditioned by 2 Gy irradiated mesenchymal stromal cells. 

Pt Age/ 

sex 

 No fractionation       < 10 kDa     10–100 kDa          > 100 kDa 

 Control CM Control CM Control CM Control CM 

#1 84/♀ 46,XX[25] 

46,XX[20] 

53,XX,+1,+2,+5,+6, 

+14,+21,+22[1] 

92,XXXX[4] 

46,XX[20] 46,XX[25] 46,XX[25] 
46,XX[22] 

92,XXXX[3] 
NA NA 

#2 
65/

♂ 
46,XY[25] 

46,XY[20] 

92,XXXX[1] 

184,XXXXYYYY,chtb(11)(q23

)[1] 

46,XY,dup(13q)[1] 

47,XY,+21,chtb(11)(p12)[1] 

46,XY,chtb(9)(12)[1] 

 

46,XY[25] 46,XY[22] 46,XY[25] 

46,XY[21] 

92,XXXX[2] 

69,XXY[1] 

47,XY,+3[1] 

46,XY[25] 46,XY[25] 

 #3 
62/

♂ 
46,XY[25] 

46,XY[22] 

92,XXYY[3] 
46,XY[25] 46,XY[25] 46,XY[25] 

46,XY[20] 

92,XXYY[3] 

46,XY,chtb(5)(q33)[

1] 

46,XY,+f[1] 

 

46,XY[25] 46,XY[25] 

#4 
62/

♂ 
46,XY[25] 

46,XY[21] 

92,XXYY[3] 

92,XXYY,chtb(2p)[1] 

46,XY[25] 

46,XY[23] 

46,XY,chtb(14q)[

1] 

46,XY[25] 

46,XY[22] 

92,XXYY[1] 

184,XXXXYYYY[1] 

46,XY,chtb(7p)[1] 

 

46,XY[23] 

184,XXXXYYYY[2

] 

46,XY[25] 

#5 
85/

♂ 

46,XY[13] 

45,X,-

Y[12] 

46,XY[10] 

45,X,-Y[12] 

90,XX,-Y,-Y[1] 

92,XXYY[1] 

184,XXXXYYYY[1] 

 

46,XY[5] 

45,X,-

Y[20] 

46,XY[7] 

45,X,-Y[18] 

46,XY[21] 

45,X,-Y[4] 

46,XY[18] 

45,X,-Y[3] 

92,XXYY[2] 

47,XY,+2[1] 

50,XY,+1,+7,+9,+14[

1] 

46,XY[10] 

45,X,-Y[15] 

46,XY[13] 

45,X,-Y[7] 

92,XXYY[1] 

90,XX,-Y,-

Y[1] 
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#6 

 

52/

♂ 
46,XY[25] 

46,XY[22] 

92,XXYY[2] 

184,XXXXYYYY[1] 

 

46,XY[25] 
46,XY[24] 

46,XY,+f[1] 
46,XY[21] 

46,XY[21] 

92,XXYY[3] 

184,XXXXYYYY[1] 

 

46,XY[25] 46,XY[25] 

CM, conditioned medium; NA, not assessed. 
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3.2. Chromosomal Instability in Human CD34+ Cells 

Metaphases were analyzed in human CD34+ cell samples (6 patients; ∑ 46 samples) expanded 

for 3 days in native medium followed by culture for 3 days in un-/fractionated MSC conditioned or 

un-/fractionated control medium, respectively (Figure 1b, Table 1). Increased numbers of aberrant 

metaphases (general p = 0.0007 [Kruskal-Wallis test]; pairwise comparison each p = 0.0022 [Wilcoxon 

two-sample test]) were detected in CD34+ cells grown in the (I) 10–100 kDa fraction of MSC 

conditioned medium when compared to numbers of aberrant metaphases in CD34+ cells grown in 

(II) < 10 kDa and (III) > 100 kDa fractions of MSC conditioned medium or in un-/fractionated control 

medium. More precisely, distinct chromatid breaks (chtb), e.g., chtb(5q) and chtb(7q) as well as 

aneuploidies, e.g., tetraploidies and octaploidies, were observed in CD34+ cells grown in the (II) 10–

100 kDa fraction of MSC conditioned medium. In addition, distinct chtb, e.g., chtb(2), chtb(9) and 

chtb(11) as well as aneuploidies, e.g., tetraploidies and octaploidies, were observed in CD34+ cells 

grown in unfractionated MSC conditioned medium. It has to be noted, that loss of chromosome Y in 

#5 is a common finding in elderly men occurring at a frequency of 5–10% [25,26]. Further, few 

chromosomal aberrations, e.g., chtb(14q) and aneuploidies, e.g., tetraploidies, were detected at very 

low frequencies in (I) < 10 kDa and (III) > 100 kDa fractions of MSC conditioned medium, which 

might be due to limitations in accuracy of the filtration process. 

Finally, heat inactivation of unfractionated MSC conditioned medium and unfractionated 

control medium (2 patients, ∑ 4 samples) resulted in reduced proliferation of CD34+ cells. Here, all 

evaluable metaphases displayed a normal karyotype. 

4. Discussion 

Genotoxic bystander signals released from irradiated human MSC may induce DNA damage 

and CIN in human HSPC potentially initiating MN. While increased DNA damage and CIN are 

readily inducible in human CD34+ cells by exposure to MSC conditioned medium, the genotoxic 

bystander signals in MSC conditioned medium remain largely uncharacterized yet. Therefore, our 

study was designed to investigate the molecular features of bystander signals in terms of molecular 

weight and potential protein characteristics. For this purpose, approximate (I) < 10 kDa, (II) 10–100 

kDa and (III) > 100 kDa fractions of MSC conditioned medium were generated for co-culture 

experiments in healthy human CD34+ cells of the same donors.  

Increased numbers of γH2AX foci were detected in CD34+ cells grown in the (II) 10–100 kDa 

fraction of MSC conditioned medium when compared to low numbers of γH2AX foci in CD34+ cells 

grown in (I) < 10 kDa and (III) > 100 kDa fractions of MSC conditioned medium or in un-/fractionated 

control medium. As γH2AX foci are a marker of DSB, our data are in line with similarly increased 

numbers of chtb detected in CD34+ cells grown in the (II) 10–100 kDa fraction of MSC conditioned 

medium. Importantly, chtb may activate oncogenes or inactivate tumor suppressor genes, 

respectively, thus providing a potential mechanistic link to the initiation of MN [27]. 

Further, increased numbers of aberrant metaphases were observed in CD34+ cells grown in the 

(II) 10–100 kDa fraction of MSC conditioned medium when compared to low numbers of aberrant 

metaphases in CD34+ cells grown in (I) < 10 kDa and (III) > 100 kDa fractions of MSC conditioned 

medium or in un-/fractionated control medium. In particular, the number of tetraploidies was 

increased in the (II) 10–100 kDa fraction of MSC conditioned medium. Generally, tetraploidies may 

occur by chromosomal non-disjunction during mitosis or cytokinesis failure [28]. Further, 

tetrapolidies are found in about 1% of AML but 13% of t-AML cases [29]. Hence, our finding of 

increased tetraploidies in CD34+ cells grown in the (II) 10–100 kDa fraction of MSC conditioned 

medium suggests a mechanistic link to the initiation of MN. Although tetraploidies occurred at very 

low frequency in CD34+ cells grown in control medium, this result is not contradictory to our 

interpretations but indicates that tetraploidies may randomly occur in vitro during the proliferation 

process itself.  

Finally, heat inactivation of unfractionated MSC conditioned and control medium resulted in 

reduced proliferation of CD34+ cells, which all demonstrated regular karyotypes. Thus, RIBE 
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mediators have a temperature-sensitive structure, supporting the notion that the three-dimensional 

conformation of macromolecules, such as the native tertiary structure in proteins, confers specifically 

to the genotoxic effects in the (II) 10–100 kDa fraction of MSC conditioned medium instead of the 

sheer presence of mediating macromolecules. 

Our study may raise the question for the impact of ROS and NO as potential RIBE mediators in 

the 10–100 kDa fraction of MSC conditioned medium. Considering that ROS and NO are rather short-

lived mediator molecules, there might be no major impact of MSC released ROS and NO on detected 

RIBE in CD34+ cells in our experiments. More likely, hitherto unknown mediators with a longer half-

life may increase ROS and NO in exposed CD34+ cells grown in MSC conditioned medium [20]. 

5. Conclusions 

In conclusion, our data demonstrate that substantial genotoxic bystander signals mainly localize 

in the (II) 10–100 kDa fraction of MSC conditioned medium and that these signals are heat-sensitive. 

Based on these biochemical properties, we postulate proteins as RIBE mediators, which should be 

further analyzed by an in-depth proteome analysis of the corresponding fraction. Ultimately, it has 

the potential to uncover the identity of key bystander signals, which is fundamental for the 

development of next-generation anti-leukemic drugs. 
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chtb: chromatid breaks 

CIN: chromosomal instability 

DSB: DNA double-strand breaks 

HSPC: human hematopoietic stem and progenitor cells 

MN: myeloid neoplasms 

MSC: mesenchymal stromal cells 

NO: nitric oxide 

PBS: phosphate-buffered saline 

RIBE: radiation-induced bystander effects 

ROS: reactive oxygen species 

t-MN: therapy-related MN 
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