CELLS 2020

Cell-to-Cell Metabolic Cross-Talk in Physiology and Pathology 17 DECEMBER 2020 – 17 JANUARY 2021 | ONLINE

EXTRACELLULAR VESICLES (EVs) DERIVED BY HUMAN ENDOTHELIAL PROGENITOR CELLS (EPCs) PROTECT HUMAN RENAL GLOMERULAR ENDOTHELIAL CELLS AND PODOCYTES FROM TUMOR NECROSIS FACTOR-α INJURY

Davide Medica, PhD

Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, Novara, Italy.

davidemedica@gmail.com

Extracellular Vesicles (EVs)

	Exosomes	Microvesicles	Apoptotic bodies
Formation	Endosomal pathway, internal budding, exocytosis	Budding off the plasma membrane	Cell fragmentation/ blebbing
Size	30–100 nm	100–1,000 nm	1–5 µm
Content	Proteins, lipids, mRNA, miRNA and cytosol	Proteins, lipids, mRNA, miRNA and cytosol	Proteins, lipids, DNA, rRNA, organelles and cytosol

Extracellular vesicles in renal disease D Karpman, A Ståhl & I Arvidsson Nature Reviews Nephrology (2017)

Extracellular Vesicles (EVs) – Formation and Release

Exosomes

Exosomes are released by exocytosis through a mechanism dependent on cytoskeleton activation and under the regulation of p53 protein.

Exosomes/microvesicles as a mechanism of cell-to-cell communication. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Kidney Int. 2010

Microvesicles

Microvesicles takes place from the budding of small cytoplasmic protrusions followed by their detachment from the cell surface dependent on calcium influx, calpain and cytoskeleton reorganization.

Extracellular Vesicles (EVs)– Uptake and Biological Activity

EVs may mediate a cell-to cell horizontal transfer of biological material after uptake by Pinocytisis, Membrane Fusion, Endocytosis, or Receptor-mediated Endocytosis

Exosomes/microvesicles as a mechanism of cell-to-cell communication. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Kidney Int. 2010

Endothelial Progenitor Cells (EPCs)

EPCs are adult stem cells derived from the bone marrow that circulate in the peripheral blood

EPCs play an important role in the regulation of vascular homeostasis and participate in the regeneration of injured endothelium and of different organs

EPC-induced endothelial cell repair is mainly ascribed to the release of paracrine factors:

-Growth Factors (VEGF, HGF, etc.) -Extracellular vesicles (EVs)

Endothelial progenitor cell-derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA

Maria Chiara Deregibus,¹ Vincenzo Cantaluppi,¹ Raffaele Calogero,² Marco Lo Iacono,² Ciro Tetta,³ Luigi Biancone,¹ Stefania Bruno,¹ Benedetta Bussolati,¹ and Giovanni Camussi¹

WNT Pathway

Energy Storage Cell Cycle

Progression

Cell

Cell

Apoptosis Vasodilation

Vascular

Remodeling

Angiogene:

EPC-derived EVs exerted functional and morphologic protection from renal Ischemia Reperfusion Injury

	Normal	Sham	IRI	IRI + EPC EV	IRI + EPC EV Rnase
Casts (n/HPF)	0	0	2.6 ± 1.2	0.48 ± 0.21	2.93 ± 0.84
Tubular Apoptosis (n/HPF)	1.6 ± 0.3	1.8 ± 0.6	17.6 ± 2.9	3.4 ± 1.3	14.8 ± 2.7
Infiltrating Granulocytes	2.2 ± 0.8	2.9 ± 1.2	29.6 ± 3.3	9.6 ± 2.2	23.8 ± 4.6
Infiltrating Monocytes	6.7 ± 1.1	6.5 ± 1.5	44.2 ± 0.6	12.3 ± 4.4	28.2 ± 3.8

EPC-derived EVs stimulate Angiogenesis on <u>Peritubular</u> <u>Endothelial Cells</u> in Hypoxia

С 4 Hypoxia 3 Hypoxia + MV Fold variation 2 -1 -2 FGFR3 NRP1 85 MMP2 PECAM1 PLA SPHK1 2015 TYMP 6 VEGFa

EPC-derived EVs increase Resistance to Apoptosis on <u>Tubular Epithelial Cells</u> in Hypoxia

Characterization of EPC-derived EVs

Average size: 160 nm

160 microRNAs

ANGIOGENES	SIS P	ROLIFERATION	APOPTOSIS INHIBITION	FIBROGENESIS INHIBITION
let-7a miR-106b		let-7c	miR-192	
let-7b	let-7b miR-125a		miR-17-5p	miR-200a
let-7c	let-7c miR-125b		miR-103	miR-200b
let-7d		miR-130a	miR-125a	let-7b
let-7 e		miR-15a	miR-125b	let-7c
let-7f	miR-181b		miR-145	let-7d
let-7 g		miR-181c	miR-155	let-7e
miR-126		miR-181d	miR-181b	
miR-130		miR-223	miR-181c	
miR-19b		miR-23a	miR-181d	
miR-210		miR-24	miR-191	
miR-296		miR-26a	miR-21	
miR-378		miR-26b	miR-210	
miR-92		miR-27a	miR-23a	
		miR-31	miR-23b	
		miR-484	miR-24	
			miR-26a	
			miR-26b	
TT	т	Т	miR-27a	
п	I	J	miR-27b	
			miR-29a	
			miR-30a	
			miR-30b	
			miR-30c	
			miR-30d	
			miR-30e	
niR-126 m	niR-296	Control	miR-378	

Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis

Vincenzo Cantaluppi¹, Davide Medica¹, Claudio Mannari², Giulia Stiaccini², Federico Figliolini¹, Sergio Dellepiane¹, Alessandro Domenico Quercia¹, Massimiliano Migliori³, Vincenzo Panichi³, Luca Giovannini², Stefania Bruno¹, Ciro Tetta⁴, Luigi Biancone¹ and Giovanni Camussi¹

Crosstalk in Glomerular Injury and Repair Henrik Dimke, Yoshiro Maezawa, and Susan E. Quaggin 4 Curr Opin Nephrol Hypertens. 2015 May ; 24(3): 231–238.

Glomerular Mesangial Cells are involved in the mechanisms of filtration, basement membrane deposition and phagocytosis

Proximal tubule

Analysis of biological effect of EPC-derived EVs on Glomerular Mesangial Cells

> In glomerulonephritis, they are susceptible to immunemediated and inflammatory damage

Loop of Henle

Glomerulus

Nephron

Distal tubule

EPC-derived EVs protect glomerular mesangium in experimental anti-Thy1.1 glomerulonephritis through inhibition complement cascade

Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis

Vincenzo Cantaluppi¹, Davide Medica¹, Claudio Mannari², Giulia Stiaccini², Federico Figliolini¹, Sergio Dellepiane¹, Alessandro Domenico Quercia¹, Massimiliano Migliori³, Vincenzo Panichi³, Luca Giovannini², Stefania Bruno¹, Ciro Tetta⁴, Luigi Biancone¹ and Giovanni Camussi¹

Expression of complement inhibitors by EPCs and EPC-derived EVs

EPC-derived EVs significantly reduced C5b-9 deposition in Rat Mesangial Cells *in vitro*

Rat Serum

Thy 1.1 Ab + Rat Serum +

EPC EV RNase

Human Serum

Thy 1.1 Ab +

Human Serum +

EPC EV RNase

Glomerular Endothelial Cells (GECs), Basement membrane and Podocytes are part of the Glomerular Filtration Barrier (GFB)

> Filtration of blood in pre urine in Bowman's space

Complex cross-talk of growth factors between Glomerular Endothelial Cells (GECs) and Podocytes to maintain GFB integrity

Angiogenesis, Proliferation Apoptosis, Differentiation Basement membrane production

EPC-derived EVs protect in Glomerular Endothelium and Podocytes in experimental anti-Thy1.1 glomerulonephritis

GECs Podocytes

RESEARCH ARTICLE

C5α Induces the Synthesis of IL-6 and TNF-α in Rat Glomerular Mesangial Cells through MAPK Signaling Pathways

Mingde Ji^{1,2}, Yanlai Lu¹, Chenhui Zhao³, Wenxing Gao⁴, Fengxia He¹, Jing Zhang¹, Dan Zhao¹, Wen Qiu¹*, Yingwei Wang¹

Α

Tumor Necrosis Factor- α (TNF- α) is a key mediator of inflammation in kidney diseases, particularly in glomerulonephritis

it acts on TNFR1 and TNFR2 receptors which are equally activated in glomerulonephritis in Podocytes and Glomerular Endothelial Cells

Tumor Necrosis Factor Receptors: Biology and Therapeutic Potential in Kidney Diseases Marijn M. Speeckaert, Reinhart Speeckaert Margo Laute a Raymond Vanholder a Joris R. Delanghe Am J Nephrol 2012;36:261–270

Methods/1

Peripheral blood of healthy volunteers

Isolation, characterization and mantainance of EPCs (CD133+/flk-1+) in culture *in vitro*

Ultracentrifugation of culture medium of EPCs

after 2-3 passages

Isolation of EVs

Methods/3

Co-culture Model

Aims of the study

- 1) Description of the internalization mechanisms in Glomerular Endothelial Cells (GECs) and Podocytes
- 2) To evaluate the pro-angiogenic properties of EPC-derived EVs on GECs
- 3) To evaluate the protective effects of EPC-derived EVs in a inflammation model with TNF- α and other cytokines (CK) in GECs and Podocytes
- 4) Analysis of the effect of EPC-derived EVs in a co-culture model of GECs and Podocytes

Internalization of EPC-derived EVs in Glomerular Endothelial Cells (GECs) and Podocytes

% of PKH26-positive cells

EPC-derived EV effect on Angiogenesis of GECs

EPC-derived EVs increase expression of proteins involved in GEC angiogenesis

EPC-derived EVs modulate gene expression of GECs

Angiogenesis

Anti-angiogenetic genes

Growth factors for podocytes (cross-talk)

Cell Migration

Glomerular basement membrane

List of miRNAs	Target genes	
Γ.		
mir-137	ITGAV, TGFB2, THBS1	
mir-142-3p	ITGAV	
mir-142-5p	ITGAV, TGFB2	
mir-17-3p	EPHB4, NRP2, S1PR1, THBS1	
mir-17-5p	COL4A3, EPHB4, ITGAV, NRP2, S1PR1, TGFB2, THBS1	
mir-18a	HPSE, THBS1	
mir-19a	EPHB4, FGF2, S1PR1, THBS1	
mir-30a-3p	FGF2, THBS1	
mir-30e-3p	FGF2, THBS1	
mir-30a-5p	CXCL1, CXCL6, ITGAV, THBS1	
mir-30e-5p	CXCL6, ITGAV	
mir-324-3p	HPSE	
mir-425-5p	ITGAV, THBS1	
mir-484	EPHB4, ITGAV, THBS1	
mir-485-3p	FGF1, THBS1	
mir-650	THBS1	

EPC-derived EVs protect GECs in a inflammatory model with TNF- α and other cytokines (CK)

Reactive Oxygen Species expression

D

Vehicle

CK + EV

CK + EV RNase

EPC-derived EVs inhibit Leukocyte adhesion on GECs in a inflammatory model with TNF- α and other cytokines (CK)

EPC-derived EVs protect Podocytes in a inflammatory model with TNF- α and other cytokines (CK)

Biological effect of EPC-derived EVs on a co-culture model of GECs and Podocytes

Conclusions

- 1) EPC-derived EVs internalize in Glomerular Endothelial Cells (GECs) and Podocytes effectively through mechanisms mediated by various integrins (L-selectin)
- 2) EPC-derived EVs trigger an angiogenic program in GECs that regulates proliferation, migration, and remodeling of the Glomerular Basement Membrane
- 3) In an experimental model of inflammatory injury from TNF- α and other cytokines *in vitro,* EPC-derived EVs protect GECs and Podocytes
- 4) EPC-derived EVs stimulate GECs to release growth factors able to maintain the vitality and functionality of the Podocytes in inflammatory conditions
- 5) The role of mRNAs/microRNAs is confirmed by experiments using RNase-treated EVs.
- 6) EPC-derived EVs could be exploited as potential therapeutic approach in glomerular injury without the risks associated with whole stem cell transplantation (maldifferentiation and tumorigenesis).

Special Thanks

UNIVERSITA DEGLI STUDI DI TORINO

Prof. Vincenzo Cantaluppi Dr. Marco Quaglia

Prof. Giovanni Camussi Dr. Sergio Dellepiane

Prof. Luca Giovannini Dr. Vincenzo Panichi Dr. Massimiliano Migliori Dr. Claudio Mannari Dr. Giulia Stiaccini