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Abstract.   

The electrocardiogram (ECG) is a fundamental tool in 

daily clinical medicine practice, recording millions of 

ECGs annually. Computer-assisted interpretation is 

becoming more and more important in clinical ECG 

processing and interpretation, serving as a crucial adjunct 

to physician interpretation in many clinical settings. But the 

existing commercial ECG interpretation algorithms still 

show substantial rates of misdiagnosis, and there is still a 

lack of comprehensive evaluation of computer-aided 

interpretation. We recommend using an ensemble method 

to process and classify clinical ECGs for providing 

accuracy and increasing rhythm classes. 

Cardiovascular disease is the general term for heart or vascular disease. As the number one cause 

of death, it has a wide range of epidemiological effects. With the aging of the world population, it is 

estimated that by 2030, the number of deaths due to cardiovascular diseases will increase to 22.2 million 

each year [1], and the global direct medical costs caused by cardiovascular diseases may reach US$20 

trillion [2]. Nearly 300,000 lives in the United States and 700,000 lives in Europe are lost because of 

sudden cardiac death (SCD) each year [3, 4]. Approximately 5-37 out of 1000,000 young people die from 

SCD [5]. By 2030, it is estimated that deaths related to coronary artery disease (CAD) will increase by 

37% in emerging countries [6]. 

The electrocardiogram (ECG) is a fundamental tool in daily clinical medicine practice, recording 

millions of ECGs annually [7]. The ECG is pivotal for diagnosing a wide spectrum of abnormalities from 

arrhythmias to acute coronary syndrome [8]. The Computer-aided interpretation was first attempted in 

the 1950s. Computer-assisted interpretation is becoming more and more important in clinical ECG 
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processing and interpretation, serving as a crucial adjunct to physician interpretation in many clinical 

settings [9, 10]. Although the ECG algorithm continues to improve, the existing commercial ECG 

interpretation algorithms still show substantial rates of misdiagnosis [11-13]. Many previous works have 

focused on single aspect of the ECG processing pipeline, such as noise reduction, feature extraction, 

detecting only a handful of heartbeat types or rhythm diagnoses [14-18].  As to whether it can be used to 

analyze raw ECG data to classify various diagnoses, there is still a lack of comprehensive evaluation of 

computer-aided interpretation.  

In future research, we recommend using an ensemble method to process and classify clinical ECGs 

for providing accuracy and increasing rhythm classes. First, in machine learning, we recommend 

ensembling method combines many base estimators to improve the robustness and generalization ability 

of the overall model. Second, we will construct a large ECG dataset，which came from patients and 

classified them by clinical experts. 
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