

The 3rd International Electronic Conference on Environmental Research and Public Health: Public Health Issues in the Context of COVID-19 Pandemic 11–25 JANUARY 2021 | ONLINE

THE IMPACT OF THE AVERAGE TEMPERATURE, HUMIDITY, WIND SPEED, ALTITUDE AND POPULATION DENSITY ON DAILY COVID-19 INFECTIONS' EVOLUTION

Rachid LAGTAYI, Lamya LAIRGI, Abdelmajid DAYA, Ahmed KHOUYA

Study the impact of the daily average wind speed and population density on the daily number of COVID-19 infection's evolution around six different cities

IntroductionData bases**Results and discussion**ConclusionTemperature EffectHumidity EffectWind Speed EffectAltitude and population density impact**Proposed Mathematical Model**

To estimate the impact of climatic parameters (Wind speed W_i) and population density on the variations of daily COVID-19 infections around the six cities under study.

- Before quarantine: $P_{total} = P_s + P_t$
- After quarantine: $P_{total} = P_s$

• *P_s* Average annual population density in a city

- P_t Average annual visitors' density across each city
- The average annual number of populations N(t) in a city could be presented as(You et al. 2020):
 N(t)=S(t)+I(t)+R(t)
 - S (t): Number of susceptibles on day t.
 - I (t): Number of infected cases on day t.
 - R (t): Number of recovered patients on day t.

• The variables S (t), I (t) and R (t) vary over time and they could be presented by SIR model by a system of three differential equations as follow(McCluskey 2010; Satsuma et al. 2004):

 $\begin{cases} \frac{dS}{dt} = -aS(t).I(t) \\ \frac{dI}{dt} = aS(t).I(t) - bI(t) \\ \frac{dR}{dt} = bI(t) \end{cases}$

- a: expected amount of people an infected person infects per day ($a \simeq 1/tip$).
- b: Proportion of recovered patients per day (b = 1/D), (D=14 days in our estimations).
- tip: average incubation period (equals 5.75 days in our study)

 Introduction
 Data bases
 Results and discussion Conclusion

 Temperature Effect
 Humidity Effect
 Wind Speed Effect
 Altitude and population density impact
 Proposed Mathematical Model

- Population density affected very highly the number of COVID-19 infections with a rate of 90%.
- Climatic conditions (wind speed) contribute slightly in reducing the number of daily infected cases by an approximate rate of 10%.

$$\begin{cases} \frac{dS}{dt} = -(a+\gamma)S(t-t_{ip}).I(t-t_{ip})\\ \frac{dI}{dt} = (a+\gamma)S(t-t_{ip}).I(t-t_{ip}) - (b+\gamma)I(t)\\ \frac{dR}{dt} = (b+\gamma)I(t) \end{cases}$$

$$\begin{cases} if S > \frac{a+\gamma}{b+\gamma} & so \quad \frac{dI}{dt} > 0\\ if S < \frac{a}{b} & so \quad \frac{dI}{dt} < 0 \end{cases}$$

- γ is the proportion in which climatic conditions contribute in reducing the number of susceptibles then infections.
- The population density factor affects the evolution of infections by 90%, while the climatic parameters affects it by only 10%, so $\gamma < a$, then, we estimated that $\gamma \simeq \frac{a}{9}$.

The temperature, the humidity and the altitude parameters have no impact on daily number of COVID-19 infections

Results

Perspective: The results give serious thought to a special ventilation system in buildings and hospitals to reduce contamination by COVID-19

> The estimated mathematical model showed that the number of daily susceptibles and infections has slightly decreased compared to presented S-I-R model.

For an average wind speed greater than **25km/h**, the number of COVID-19 infections is slightly decreased with a rate of **10%**.

Population density has a significant impact on the daily COVID-19 spread with a rate of **90%.**

Thank you for your attention

1.