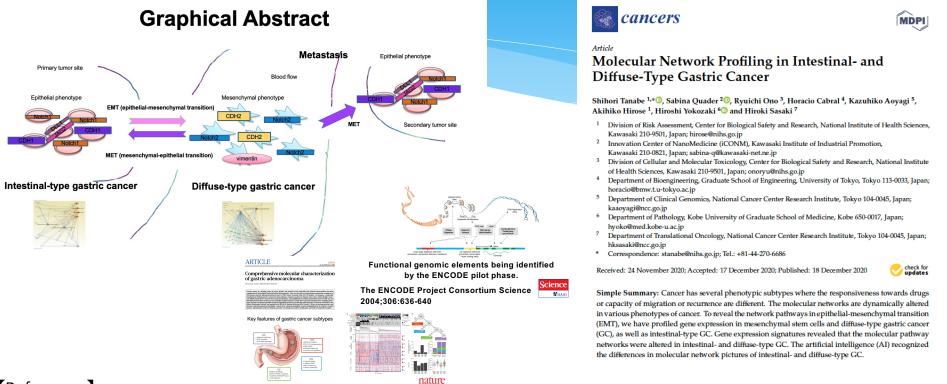
The roles of cell cycle and BRCA1 in the DNA damage response

Shihori Tanabe¹, Sabina Quader², Ryuichi Ono³, Horacio Cabral⁴, Kazuhiko Aoyagi⁵, Akihiko Hirose¹, Hiroshi Yokozaki⁶, Hiroki Sasaki⁷

1. Div. Risk Assess., CBSR, Natl. Inst. Health Sci., 2. iCONM, 3. Div. Cell. Mol. Tox., CBSR, Natl. Inst. Health Sci., 4. Dept. Bioengineer., Grad. Sch. Engineer., The Univ. of Tokyo, 5. Dept. Clin. Genomics, FIOC, Natl. Cancer Ctr. Res. Inst., 6. Dept. Path. Grad. Sch. Med., Kobe Univ., 7. Dept. Transl. Oncol., FIOC, Natl. Cancer Ctr. Res. Inst.


The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response

February 1-14, 2021, @Online

Abstract

* Molecular network activation states alter dynamically in biology and diseases. In cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT) networks play an important role to acquisition of the drug resistance and cancer malignant feature. To reveal the network pathways in EMT and CSCs, gene expression in diffuse- and intestinal-type gastric cancer (GC) have been analyzed. The several canonical pathways have been found to be altered in diffuse- and intestinal-type GC. Canonical pathway on Cell Cycle: G1/S Checkpoint Regulation was activated in diffuse-type GC, and Cyclins and Cell Cycle Regulation was activated in intestinal-type GC. In Cell Cycle: G1/S Checkpoint Regulation, DNA damage induces p53, which was predicted to be activated in diffuse-type GC. Canonical pathway related to Role of BRCA1 in DNA Damage Response was activated in intestinal-type GC, where BRCA1 which is related to G1/S phase transition was up-regulated. Cell cycle regulation may be altered in EMT condition in diffuse-type GC.

Background and Objectives

[References]

1. Tanabe, S.; Quader, S.; Ono, R.; Cabral, H.; Aoyagi, K.; Hirose, A.; Yokozaki, H.; Sasaki, H. Molecular Network Profiling in Intestinaland Diffuse-Type Gastric Cancer. *Cancers* **2020**, 12, 3833. https://doi.org/10.3390/cancers12123833

2. Tanabe, S., Quader, S., Cabral, H., and Ono, R. (2020) Interplay of EMT and CSC in cancer and the potential therapeutic strategies. *Front. Pharmacol.* **11:**904. https://doi.org/10.3389/fphar.2020.00904

3. The Cancer Genome Atlas Research Network., Analysis Working Group: Dana-Farber Cancer Institute., Bass, A. *et al.* Comprehensive molecular characterization of gastric adenocarcinoma. *Nature* **513**, 202–209 (2014). https://doi.org/10.1038/nature13480

Ref. The Cancer Genome Atlas Research Network, Nature 513, 202-209 (20

4. Tanabe, S., Aoyagi, K., Yokozaki, H., and Sasaki, H. (2014). Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition. *Int. J. of Oncol.* **44**, 1955-1970. https://doi.org/10.3892/ijo.2014.2387

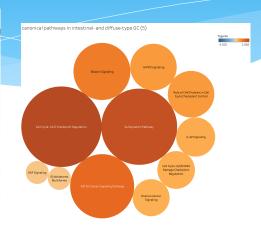
Canonical pathways altered in diffuse- and intestinal-type GC

canonical pathway

Canonical Pathways	Tcga Cin	Tcga Gs
Cell Cycle: G1/S Checkpoint Regulation	-1.147	2.982
Sumoylation Pathway	1.069	2.673
FAT10 Cancer Signaling Pathway	-0.632	1.897
Relaxin Signaling	-3	1.5
Role of CHK Proteins in Cell Cycle Checkpoint Control	-0.5	1
HIPPO signaling	-1	1
IL-22 Signaling	-0.707	0.707
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	-1.528	0.655
Ovarian Cancer Signaling	-3.162	0.632
HGF Signaling	-2.183	0.243
Glioblastoma Multiforme Signaling	-2.668	0.243
Cholesterol Biosynthesis III (via Desmosterol)	2.449	0
Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol)	2.449	0
Cholesterol Biosynthesis I	2.449	0
Glioma Signaling	-1	-0.333
gamma-glutamyl Cycle	-0.447	-0.447
Pancreatic Adenocarcinoma Signaling	0	-0.5
Wnt/beta-catenin Signaling	-0.6	-0.6
Role of BRCA1 in DNA Damage Response	0.816	-1.225
ATM Signaling	1.043	-1.46
Mitotic Roles of Polo-Like Kinase	1	-1.5
3-phosphoinositide Biosynthesis	0.378	-1.512
Methionine Degradation I (to Homocysteine)	1.633	-1.633
Small Cell Lung Cancer Signaling	-1.155	-1.732
Cell Cycle Regulation by BTG Family Proteins	1.155	-1.732
NER Pathway	0.209	-1.877
Pyrimidine Ribonucleotides Interconversion	1.265	-1.897
Purine Nucleotides De Novo Biosynthesis II	0	-2
Pentose Phosphate Pathway	-1	-2
Pyrimidine Ribonucleotides De Novo Biosynthesis	0.905	-2.111
Aldosterone Signaling in Epithelial Cells	-0.905	-2.111
Aryl Hydrocarbon Receptor Signaling	-0.447	-2.236
Dolichyl-diphosphooligosaccharide Biosynthesis	0.378	-2.646
tRNA Charging	-1.5	-3
Cyclins and Cell Cycle Regulation	0.894	-3.13
Estrogen-mediated S-phase Entry	1.5	-3.5

Tcg	ja Gs
1	NULL
•	-3.5
	-3.13
ז י	-3
1	-2.646
	-2.236
ン ン ン	-2.111
1	-2
•	-1.897
1	-1.877
	-1.732
•	-1.633
	-1.512
• •	-1.5
1	-1.46
1	-1.225
✓ ✓	-0.6
1	-0.5
	-0.447
/ /	-0.333
1	0
•	0.243
	0.632
ז י	0.655
•	0.707
•	1
ז י	1.5
~	1.897
•	2.673
~	2.982

l cga Gs	
-3.500	2.982

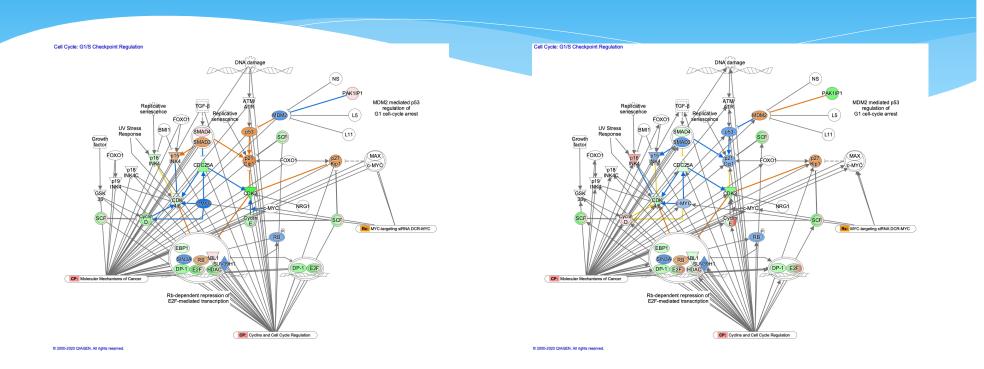

_

S CIN TCCA Estrogen-mediated S-p Relaxin Signaling tRNA Charging Cell Cycle: G1/S Checkpoi Cyclins and Cell Cycle Reg. Ovarian Cancer Signaling Sumoylation Pathway Methionine Degradation I Pyrimidine Ribonucleotide. Dolichyl-diphosphooligos Pyrimidine Ribonucleotide. Aldosterone Signaling in E... Pentose Phosphate Pathway Glioblastoma Multiforme S... Cell Cycle Regulation by B... Small Cell Lung Cancer Sig. Arvi Hydrocarbon Recept. FAT10 Cancer Signaling P... ATM Signaling Mitotic Roles of Polo-Like .. Cholesterol Biosynthesis I Cholesterol Biosynthesis II Cholesterol Biosynthesis II. HGF Signaling Cell Cycle: G2/M DNA Da... NER Pathway Role of BRCA1 in DNA Da... Purine Nucleotides De Nov.. **HIPPO signaling** 3-phosphoinositide Biosy... Role of CHK Proteins in Ce.. IL-22 Signaling Glioma Signaling Wnt/β-catenin Signaling γ-glutamyl Cycle Pancreatic Adenocarcino... Cell Cycle Control of Chro... GADD45 Signaling GADD45 Signaling Reelin Signaling in Neurons Serine Biosynthesis Superpathway of Serine an... Glutathione Biosynthesis Chronic Myeloid Leukemia... **RAR** Activation Tight Junction Signaling Pentose Phosphate Pathwa Sertoli Cell-Sertoli Cell Jun 1,25-dihydroxyvitami Proline Biosynthesis I Cleavage and Polyadenylat Antiproliferative Role of T... Adipogenesis pathway Proline Biosynthesis II (fro Breast Cancer Regulation ... Oxidized GTP and dGTP D... BER pathway Factors Promoting Cardio.. Prostate Cancer Signaling DNA damage-induced 14-Hereditary Breast Cancer ... Protein Ubiquitination Pat... Mismatch Repair in Eukary.. Human Embryonic Stem C..

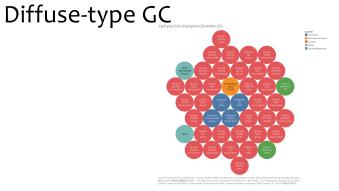

Diphthamide Biosynthesis Molecular Mechanisms of ... Role of JAK family kinases ... IL-15 Production RAN Signaling Arginine Degradation VI (...

com-CIN-GS-RNAseq-

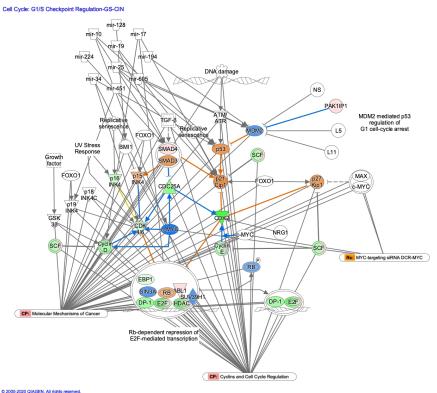
tox-Tox



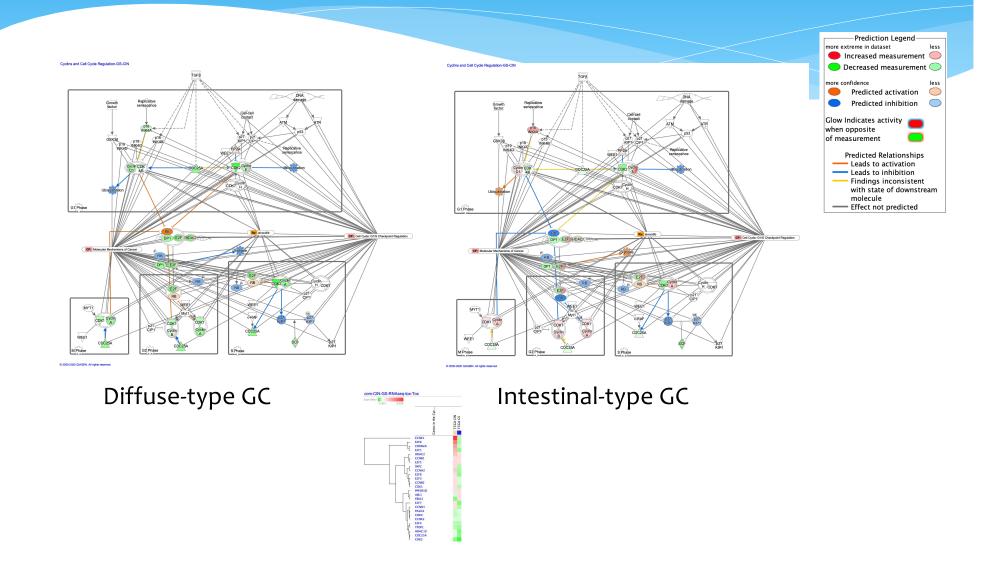
Size shows the activation score in diffuse-type GC. Color indicates the activation score in diffuse-type GC.



Size shows the activation score in intestinal-type GC. Color indicates the activation score in diffuse-type GC.


Cell Cycle: G1/S checkpoint Regulation pathway was activated in diffuse-type GC

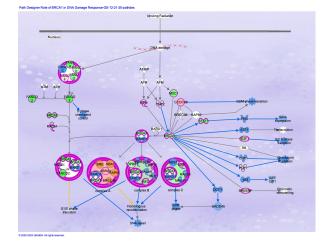
Intestinal-type GC

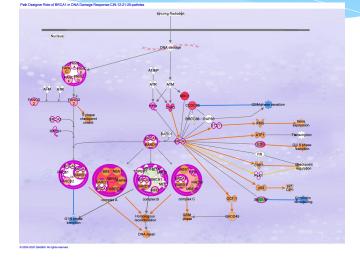

Direct relationships of miRNAs and targeted molecules in Cell Cycle: G1/S checkpoint Regulation pathway in diffuse-type GC

Direct Relationship Type RNA-RNA interactions: microRNA targeting

From Molecule(s)	To Molecule(s)
mir-10	SMAD4
mir-10	SUV39H1
mir-10	p53
mir-128	BMI1
mir-17	CyclinD
mir-17	RB
mir-17	p21Cip1
mir-19	SMAD4
mir-19	p21Cip1
mir-194	MDM2
mir-224	SMAD4
mir-25	MDM2
mir-25	p21Cip1
mir-25	P53
mir-34	CDK4/6
mir-34	c-MYC
mir-34	p53
mir-451	p19INK4
mir-605	MDM2

Cyclins and Cell Cycle Regulation pathway was activated in intestinal-type GC

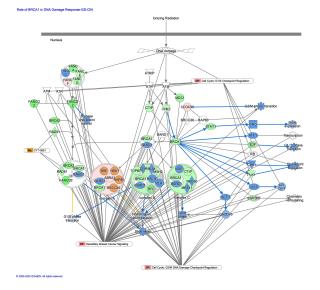

Direct relationships of miRNAs and targeted molecules in Cyclins and Cell Cycle Regulation pathway in diffuse-type GC


<page-header>

Direct Relationship Type RNA-RNA interactions: microRNA targeting

From Molecule(s)	To Molecule(s)
mir-101	ATM
mir-145	P53
mir-15	WEE1
mir-15	c-RAF
mir-17	ATM
mir-17	CyclinD1
mir-17	RB
mir-17	p21CIP1
mir-221	p27KIP1
mir-25	p21CIP1
mir-25	p53
mir-290	CDK2
mir-34	CDK4/6
mir-34	P53
mir-451	p19INK4D
mir-497	c-RAF

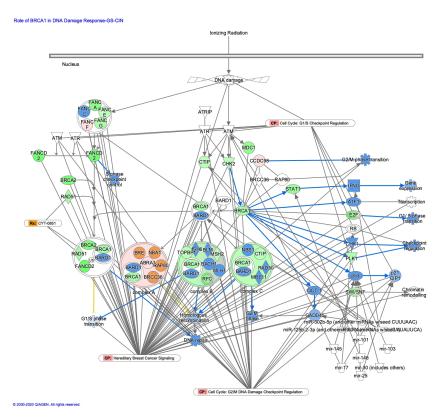
Role of BRCA1 in DNA Damage Response pathway was activated in intestinal-type GC



Diffuse-type GC

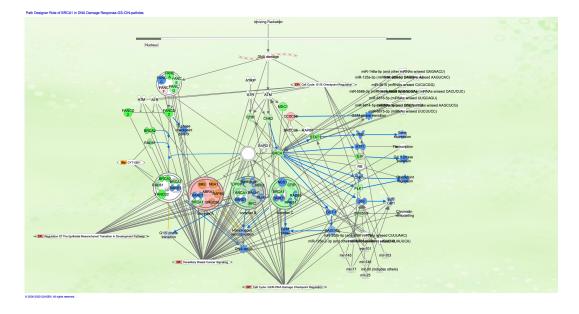
Intestinal-type GC

Role of BRCA1 in DNA Damage Response pathway was activated in intestinal-type GC



Diffuse-type GC

Intestinal-type GC


Direct relationships of miRNAs and targeted molecules in Role of BRCA1 in DNA Damage Response pathway in diffuse-type GC

Direct Relationship Type RNA-RNA interactions: microRNA targeting

To Molecule(s)
P53
BARD1
CTIP
GADD45
FANCF
IFNG
NBS1
АТМ
p53
P53
STAT1
АТМ
RB
p21CIP1
p21CIP1
P53
p53

Direct relationships of miRNAs and BRCA1 in Role of BRCA1 in DNA Damage Response pathway in diffusetype GC

Ten miRNAs which have direct relationships between BRCA1 (Direct Relationship Type RNA-RNA interactions: microRNA targeting)

miR-125a-3p (miRNAs w/seed CAGGUGA)
miR-146a-5p (and other miRNAs w/seed GAGAACU)
miR-224-5p (miRNAs w/seed AAGUCAC)
miR-3615 (miRNAs w/seed CUCUCGG)
miR-4639-3p (and other miRNAs w/seed CACUCUC)
miR-5586-3p (miRNAs w/seed AGAGUGA)
miR-6516-5p (miRNAs w/seed UUGCAGU)
miR-6814-5p (miRNAs w/seed CCCAAGG)
miR-6875-3p (miRNAs w/seed UUCUUCC)
miR-99a-3p (and other miRNAs w/seed AAGCUCG)

Cell Cycle: G2/M DNA Damage Checkpoint Regulation pathway in diffuse- and intestinaltype GC

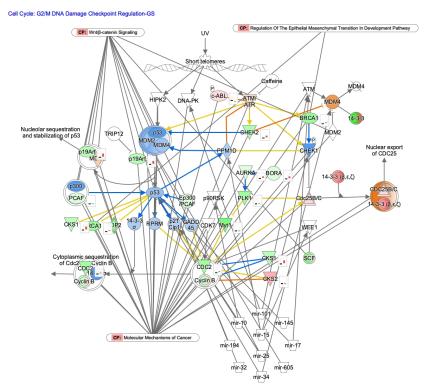
 Willbeder sequestration

 Nucleolar sequestration

 Rep 1

 HPR2

 HPR3


 <t

Path Designer Cell Cycle: G2/M DNA Damage Checkpoint Regulation-Clf

Diffuse-type GC

Intestinal-type GC

Direct relationships of miRNAs and targeted molecules in Cell Cycle: G2/M DNA Damage Checkpoint Regulation pathway in diffuse-type GC

Direct Relationship Type RNA-RNA interactions: microRNA targeting

From Molecule(s)	To Molecule(s)
mir-10	P53
mir-10	p90RSK
mir-101	ATM
mir-101	DNA-PK
mir-145	P53
mir-15	CHEK1
mir-15	PPM1D
mir-15	WEE1
mir-17	ATM
mir-17	p21Cip1
mir-194	MDM2
mir-25	MDM2
mir-25	p21Cip1
mir-25	P53
mir-32	MDM2
mir-34	MDM4
mir-34	P53
mir-605	MDM2

© 2000-2021 QIAGEN. All rights reserved

• The several canonical pathways have been found to be altered in diffuse- and intestinal-type GC.

• Canonical pathway on Cell Cycle: G1/S Checkpoint Regulation was activated in diffuse-type GC, and Cyclins and Cell Cycle Regulation was activated in intestinal-type GC.

• In Cell Cycle: G1/S Checkpoint Regulation, DNA damage induces p53, which was predicted to be activated in diffuse-type GC.

• Canonical pathway related to Role of BRCA1 in DNA Damage Response was activated in intestinal-type GC, where BRCA1 which is related to G1/S phase transition was up-regulated.

• Cell cycle regulation may be altered in EMT condition in diffuse-type GC.

Acknowledgements

Maurice Whelan **Gladys** Ouedraogo Dan Villeneuve Jason O'Brien Ye Lin Jun Nathalie Delrue Christina Quaglio Rex FitzGerald Magdalini Sachana Hristo Aladjov **Clemens Wittwehr** Mirjam Luijten Tanja Burgdorf Julija Filipovska Bette Meek Lidia Ceriani

Ed Perkins Sabina Halappanavar Masaaki Tsukano Takashi Yamada Iva Sovadicova Josephine Kugler Mike Wade Lola Bajard Anna Rourke Ludek Blaha Takao Ashikaga

Carlie LaLone Brigitte Landesmann Andrea Terron Cinzia La Rocca Olga Tcheremenskaia Judy Choi Russell Thomas Michelle Angrish Jinhee Choi Joshua Harrill

Dries Knapen Mark Viant Carole Yauk Tim Gant Vinita Chauhan Yasuhiro Yoshida Shigeru Hisada Ruthann Rudel Jessica Helm Platform for Drug Discovery, Informatics, and Structural Life Sicience Variation effect on Protein Structures and function VOI PROS CO

http://pford.info/vapros/

Shinpei Ijichi Kohei Kessoku Kengo Hayashi Fabien Grasset Naoko Ozaki Masanori Uehara Satoshi Uchida Hiroaki Kinoh Kazunori Kataoka

Members of EAGMST, WPHA, OECD

Members of Division of Risk Assessment and All Divisions, National Institute of Health Sciences, Japan
This research is supported by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from Japan Agency for Medical Research and Development (AMED), and Ministry of Health, Labour and Welfare (MHLW), Japan.