IECC 2021

The 1st International Electronic Conference on Cancers Exploiting Cancer Vulnerability by Targeting the DNA Damage Response 01-14 FEBRUARY 2021 |ONLINE

MIPT I PHYSTECH

Moscow Institute of Physics and rechnology School of Biological ano Medical Physics Laboratiy of Innowative Medicine

The extent of consequential DNA damage in human tumors from TCGA PanCanAtlas

Aleksey V. Belikov, Dr.rer.nat.

The DNA damage is crucial for the emergence of cancer cells

DNA damage

The DNA damage is crucial for the emergence of cancer cells

The DNA damage is crucial for the emergence of cancer cells

DNA damage

DNA damage response

DNA mutations

driver mutations

Cancer

What is the extent of consequential DNA damage per tumor, i.e. the number of various kinds of driver mutations?

Patient-level data
Average number of Driver arm gains per patient
Average number of Driver arm losses per patient
Average number of Driver chromosome gains per patient
Average number of Driver chromosome losses per patient
Average number of Mixed tumor suppressor events per patient
Average number of CNA-based tumor suppressor events per patient
Average number of SNA-based tumor suppressor events per patient
Average number of Mixed oncogenic events per patient
Average number of CNA-based oncogenic events per patient
Average number of SNA-based oncogenic events per patient

Results

Average number of Driver arm gains per patient

Average number of Driver arm losses per patient

Average number of Driver chromosome gains per patient

Average number of Driver chromosome losses per patient

Average number of Mixed tumor suppressor events per patient

Average number of CNA-based tumor suppressor events per patient

Average number of SNA-based tumor suppressor events per patient

Average number of Mixed oncogenic events per patient

Average number of CNA-based oncogenic events per patient

Average number of SNA-based oncogenic events per patient

Driver event distribution by age in females

Driver event distribution by age in males

Results

Average number of Driver arm gains per patient

Average number of Driver arm losses per patient

Average number of Driver chromosome gains per patient

Average number of Driver chromosome losses per patient

Average number of Mixed tumor suppressor events per patient

Average number of CNA-based tumor suppressor events per patien

Average number of SNA-based tumor suppressor events per patient

Average number of Mixed oncogenic events per patient

Average number of CNA-based oncogenic events per patient

Average number of SNA-based oncogenic events per patient

Driver event distribution by cancer stage in females

Driver event distribution by cancer stage in males

Average number of Driver arm gains per patient

Average number of Driver arm losses per patient

Average number of Driver chromosome gains per patient

Average number of Driver chromosome losses per patient

Average number of Mixed tumor suppressor events per patient

Average number of CNA-based tumor suppressor events per patient

Average number of SNA-based tumor suppressor events per patient

Average number of Mixed oncogenic events per patient

Average number of CNA-based oncogenic events per patient

Average number of SNA-based oncogenic events per patient

Cohorts

Results

Average number of Driver arm gains per patient

Average number of Driver arm losses per patient

Average number of Driver chromosome gains per patient

Average number of Driver chromosome losses per patient

Average number of Mixed tumor suppressor events per patient

Average number of CNA-based tumor suppressor events per patient

Average number of SNA-based tumor suppressor events per patient

Average number of Mixed oncogenic events per patient

Average number of CNA-based oncogenic events per patient

Average number of SNA-based oncogenic events per patient

Driver event distribution by total number of driver events per patient

CONCLUSIONS

16.5

Driver mutations per patient's tumor

Hyperactivating SNA mutations in oncogenes

Homozygous inactivating SNA mutations in tumor suppressors

Driver chromosome losses
1.0
Driver chromosome arm loss

Driver mutations per <25
years old patient

CNA amplifications of oncogenes

Homozygous CNA deletions
in tumor suppressors
2.0

Driver chromosome gains

Driver chromosome arm
gains

Driver mutations per >85 years old patient

0.4
Simultaneous hyperactivating SNA mutation and CNA amplification
0.8

Inactivating SNA mutation in one allele and CNA deletion in the other allele

BIG THANKS TO OUR TEAM

Moscow Institute of Physics and Technology
School of Biological and Medical Physics
Laboratory of Innovative Medicine

TEAM MEMBERS

- Aleksey V. Belikov, Dr.rer.nat., Senior research scientist, project development
- Alexey D. Vyatkin, Masters student, Python programming
- Danila V. Otnyukov, Masters student, Python programming
- Sergey V. Leonov, Ph.D., M.D., Lab head, supervision

THANK YOU FOR YOUR ATTENTION!

