The cytotoxic effect of ⁶⁴Cu/NOTA-terpyridine platinum conjugate, as a novel chemoradiotherapy (CRT) agent

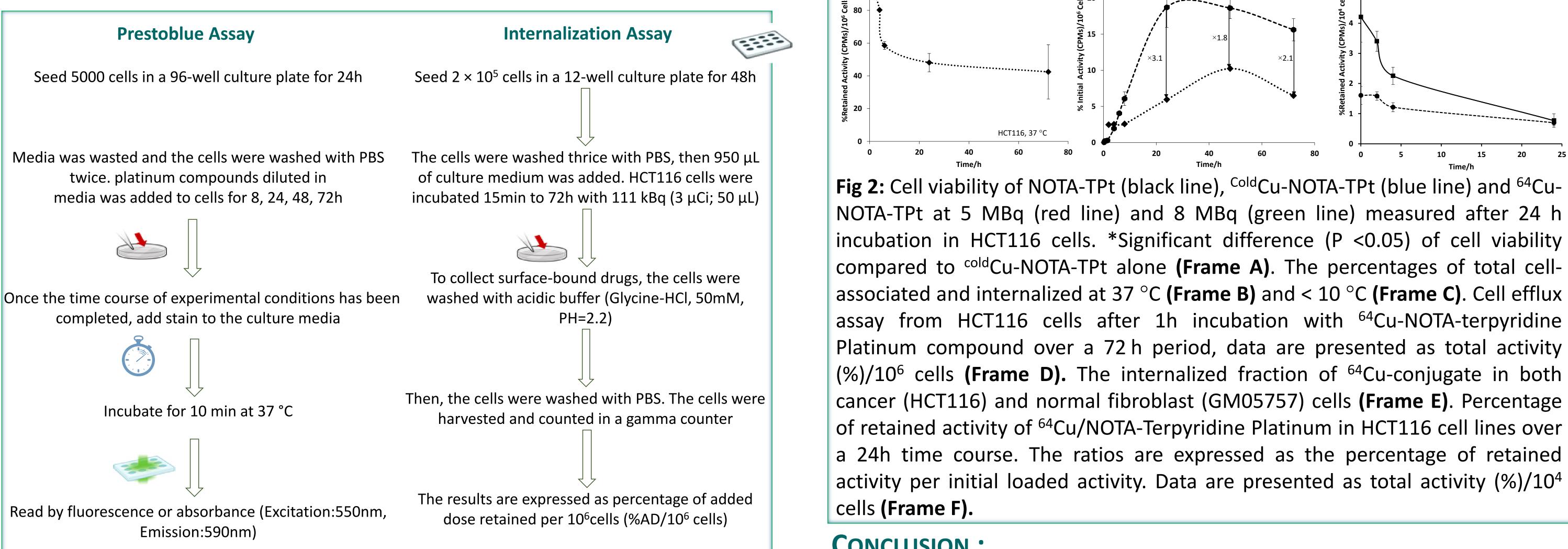
Meysam Khosravifarsani¹, Samia Ait-mohand¹, Benoit Paquette¹, Léon Sanche¹, Brigitte Guérin^{1, 2}

¹Department of nuclear medicine and radiobiology; FMSS, Université de Sherbrooke, ²Sherbrooke Molecular Imaging Center (CIMS), CRCHUS, Sherbrooke, Quebec, Canada.

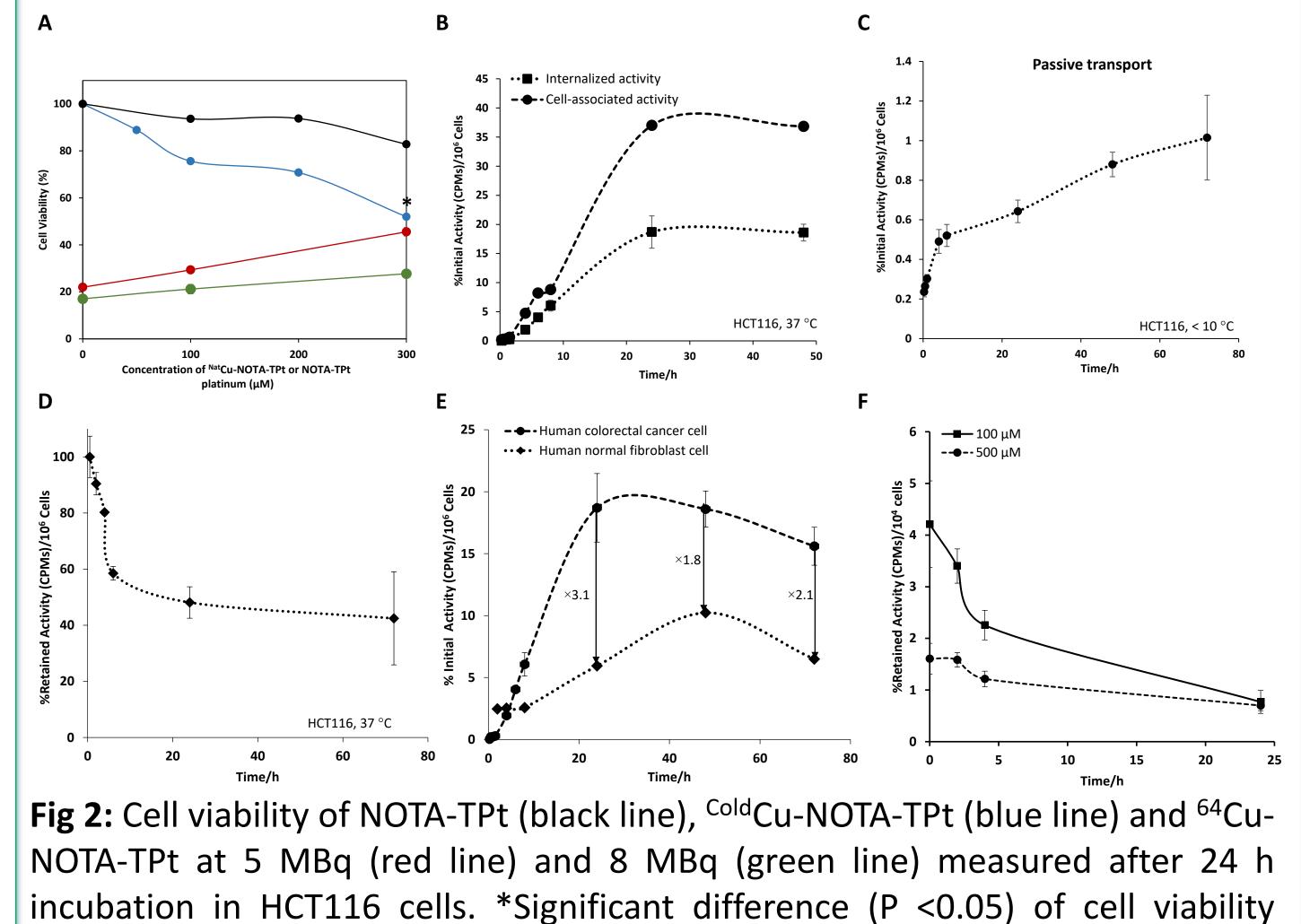
INTRODUCTION:

Colorectal cancer is one of the most prevalent cancers worldwide that displays both intrinsic and acquired resistance to platinumbased chemotherapeutic agents (Pt-CAs). To overcome such resistance new classes of Pt-CAs have been proposed, including terpyridine (TP) compounds that targets the G-quadruplex tertiary structure of DNA. Additionally, recent studies indicate a maximum chemoradiation benefit, when radiation is administered with Pt-CAs at their highest concentrations in cancer cell DNA. Accordingly, we synthesized a novel chemoradiotheranostic (CRT) agent by conjugating a TP moiety with ⁶⁴Cu (⁶⁴Cu-NOTA-TP). **METHODS:**

RESULTS:


Table 1 EC₅₀ values (μ M) of platinum compounds for both cancer HCT116 cells and normal fibroblast GM05757

		24h		48h		72h	
Entry	Compounds	GM05757	HCT116	GM05757	HCT116	GM05757	HCT116
1	NOTA-TPt	504 ± 4	> 700a	202 ± 5	63 ± 2	51 ± 3	24 ± 1ª
2	^{cold} Cu-NOTA-TPt	> 1000	298 ± 2	839 ± 2	481 ± 25	747 ± 26	330 ± 51
3	⁶⁴ Cu-NOTA-TPt ^b	>200	59 ± 3	N/A	9±2	12±2	<5
4	⁶⁴ Cu-NOTA-TPt ^c	>0.066	0.017±0.004	0.025±0.005	0.012±0.006	0.019±0.004	0.005±0.00
5	Cisplatin	88 ± 4	31 ± 2	84 ± 2	42 ± 8	77 ± 1	23 ± 3
6	Oxaliplatin	> 200	> 200	165 ± 9	64 ± 1	65 ± 3	16 ± 4



041834

The in-vitro cytotoxic and synergistic effects of complexes were assessed by Presto-blue assay. The cellular uptake, internalization and efflux of ⁶⁴Cu-NOTA terpyridine platinum complex was measured for colorectal cancer cell (HCT116) as well as a normal fibroblast cell line (GM05757) at 24, 48 and 72 hours after initial incubation time.

was ranged from 0.84 to 4 MBq/nmol.^c The apparent molar activity of the [⁶⁴Cu]Cu-NOTA-TPt solution was 119MBq/nmol.

RESULTS :

- ^{cold}Cu-labeled NOTA-terpyridine platinum complex showed 3.4, 1.7 and 2.3 times higher cytotoxicity against HCT116 cells relative to GM05757 fibroblast normal cells (table1, entry2).
- Radiolabelling NOTA-TP with ⁶⁴Cu resulted in 17530-, 40083-and 66000-fold enhancements in its cytotoxicity against HCT116 cells (EC_{50} =0.017±0.004, 0.012±0.006 and 0.005±0.002µM) as compared to ^{cold}Cu-NOTA-terpyridine ($EC_{50} = 298 \pm 2,481 \pm 25$ and 330 \pm 51µM) at 24, 48 and 72h post-administration, respectively (table1, entry4).

assay from HCT116 cells after 1h incubation with ⁶⁴Cu-NOTA-terpyridine Platinum compound over a 72 h period, data are presented as total activity (%)/10⁶ cells (Frame D). The internalized fraction of ⁶⁴Cu-conjugate in both cancer (HCT116) and normal fibroblast (GM05757) cells (Frame E). Percentage of retained activity of ⁶⁴Cu/NOTA-Terpyridine Platinum in HCT116 cell lines over a 24h time course. The ratios are expressed as the percentage of retained activity per initial loaded activity. Data are presented as total activity (%)/10⁴ cells (Frame F).

CONCLUSION:

In conclusion, these results supports the potential use of ⁶⁴Culabeled terpyridine platinum complex as a novel CRT agent to diagnose and treat cancers.

REFERENCES :

1- Georgiades SN, Abd Karim NH, Suntharalingam K, Vilar R. Interaction of Metal Complexes with G-Quadruplex DNA. Angew. Chem. Int. Ed. Engl. 2010, 49, 4020-34.

2- Ait-Mohand S, Denis C, Tremblay G, Paquette M, Guérin B. Development of Bifunctional Chelates Bearing Hydroxamate Arms for Highly Efficient ⁶⁴Cu Radiolabeling. Org. lett. 2014,16, :4512-5.

3- Anderson CJ, Ferdani R. Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research. *Cancer Biother.*

- The cytotoxicity of the ⁶⁴Cu-conjugate toward HCT116 cells was about 3.8-fold higher than that of GM05757 cells at 24 and 72h. This result was consistent with a 2-3-fold higher internalization of ⁶⁴Cu-conjugate in HCT116 cells relative to GM05757 cells at similar times (figure 2, E). The internalized activity of the ⁶⁴Cuconjugate steadily increased from 0.04±0.02% to 18.7±2.8% over 24h incubation time (figure2, B).
- Efflux kinetics of the ⁶⁴Cu-conjugate showed that more than 40% of internalized activity was retained by cancer cells over a 24h (figure2, C).

Radiopharm. **2009**, *24*, 379-93.

4- De Silva RA, Jain S, Lears KA, et al. Copper-64 Radiolabeling and Biological Evaluation of Bifunctional Chelators for Radiopharmaceutical Development. Nucl. Med. Biol. 2012, 39, 1099-104.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the cyclotron and PET operators of the CIMS. CRSNG

FINANCIAL SUPPORT

This research was made possible thanks to the financial support of the NSERC and CIHR.

NSERC moléculaire de RGPIN201404354 Sherbrooke CIHR CENTRE DE RECHERCHE

CHUS

Jeanne et J.-Louis Lévesque Chair in radiobiology of the Université de Sherbrooke MK received a Ph.D. scholarship from the Université de Sherbrooke

