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Introduction to Additive Manufacturing Modeling

Project Objective: Development of an integrated thermomechanical and microstructural model
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Microstructural and Thermomechanical Coupling
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316L Composition: 18Cr-14Ni-2.6Mo-0.03C-1Mn (wt%)
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Heat Transfer Analysis
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Temperature (°C) 26.85 636.85 1226.85 2126.85

Thermal conductivity k (W/m/°C) 13.9 23.3 32.8 19.6

Specific heat c (kJ/kg/°C) 0.498 0.578 0.658 0.769

Material data:

ABAQUS: FEM Analysis

• Energy balance, constitutive equations

• Latent heat, convection and radiation

• Quiet element method [1] 𝑘𝑞𝑢𝑖𝑒𝑡 = 𝑐𝑞𝑢𝑖𝑒𝑡 = 0

• Heat input model: Double ellipsoid volumetric source heat 

input [2]
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𝑃 = 195W, 𝑣 = 20 mm/s, idle time = 10s

𝑈𝑙𝑎𝑡𝑒𝑛𝑡 = 330
𝑘𝐽

𝑘𝑔
, 𝜌 = 8030
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Microstructural Analysis
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DICTRA Eutectic ALF refers to γ/L/δ
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Temperature History Plots
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Equilibrium Solidification
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Solidification Type 

Ferritic-Austenitic

𝐿 → 𝛿 + 𝐿 → 𝛾 + 𝛿 + 𝐿 → 𝛾 + 𝛿

Note: Sensitive to carbon (C) concentration

Freezing range: 𝑇𝐿 − 𝑇𝑆 = 21.3℃

𝑇𝐿

𝑇𝑆



Solidification model comparison
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Evolution of Phase Fractions

9

Department of Mechanical Engineering

University of Thessaly Methodology
IEC2M

2021

Department of Mechanical Engineering

University of Thessaly

IEC2M

2021
Microstructural Analysis Results

Liquid δγ

Node 10116



Evolution of δ-Fe during Thermal Cycling
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t=52.1831(sec) [Last]
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Final segregation profiles Cr, Ni microsegregation after each cooling 

Evolution of Phase Concentrations

Microstructural Analysis Results
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Key parameter for solidification Diffusion kinetics

Freezing range

Processing parameters (e.g., Cooling rate)

Phase fractions and constitutions can be provided as input for the mechanical analysis to calculate 

the residual stresses and distortions

Thermal cycling effect Microsegregation decrease 

Thermal history Microstructural evolution

Cr & Ni Segregation 
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