Microstructural and thermomechanical simulation of the additive manufacturing process in 316L austenitic stainless steel

M.P. Sotiriou¹, J.S. Aristeidakis¹, M.I.T. Tzini¹, I. Papadioti¹, G.N. Haidemenopoulos¹ and N. Aravas^{1,2}

¹Department of Mechanical Engineering, University of Thessaly, Volos, Greece ²International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

The 1st International Electronic Conference on Metallurgy and Metals

22 FEBRUARY - 07 MARCH | ONLINE

Problem Definition

Introduction to Additive Manufacturing Modeling

Image source: 3Druck.com

<u>Project Objective</u>: Development of an **integrated** thermomechanical and microstructural model

IEC2M

2021

Methodology

Microstructural and Thermomechanical Coupling

316L Composition: 18Cr-14Ni-2.6Mo-0.03C-1Mn (wt%)

Heat Transfer Analysis

ABAQUS: FEM Analysis

- Energy balance, constitutive equations
- Latent heat, convection and radiation
- Quiet element method ^[1] $k_{quiet} = c_{quiet} = 0$
- Heat input model: Double ellipsoid volumetric source heat input ^[2] P = 195 W, v = 20 mm/s, idle time = 10s

Material data:
$$U_{latent} = 330 \frac{kJ}{kg}$$
, $\rho = 8030 \frac{kg}{m^3}$

Temperature (°C)	26.85	636.85	1226.85	2126.85	
Thermal conductivity k (W/m/°C)	13.9	23.3	32.8	19.6	Y
Specific heat c (kJ/kg/°C)	0.498	0.578	0.658	0.769	1_

Boundary conditions:
$$h = 30 \frac{W}{m^2 {}^\circ C}$$
, $H = 630 \frac{W}{m^2 {}^\circ C}$, $\varepsilon = 0.5$, $T_0 = 27 {}^\circ C$

[1] Michaleris, P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes. *Finite Elem. Anal. Des.* 2014, *86*, 51–60, doi:10.1016/j.finel.2014.04.003.
[2] Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. *Metall. Trans. B* 1984, *15*, 299–305, doi:10.1007/BF02667333.

Microstructural Analysis

Heat Transfer Analysis Results

Temperature History Plots

Equilibrium Solidification

Solidification Type Ferritic-Austenitic

$$L \to \delta + L \to \gamma + \delta + L \to \gamma + \delta$$

Freezing range: $T_L - T_S = 21.3^{\circ}C$

Note: Sensitive to carbon (C) concentration

Solidification model comparison

Evolution of Phase Fractions

Evolution of δ -Fe during Thermal Cycling

Evolution of Phase Concentrations

Phase fractions and constitutions can be provided as input for the mechanical analysis to calculate the residual stresses and distortions

Thank you for your attention!