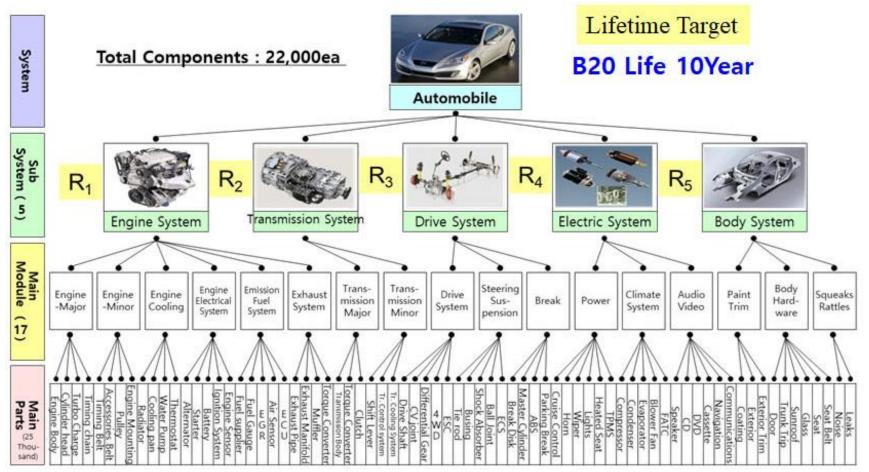


MDPI

metals

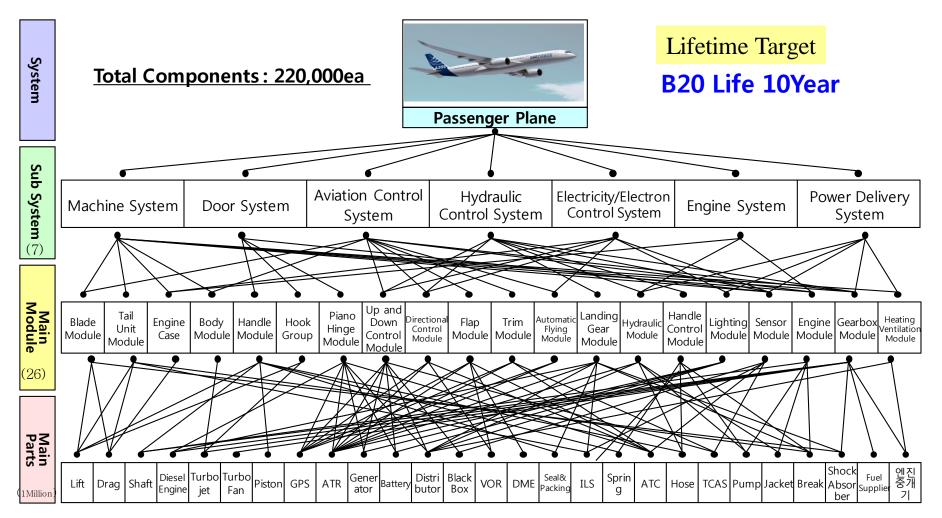
The 1st International Electronic Conference on Metallurgy and Metals 22 FEBRUARY – 07 MARCH 2021 | ONLINE

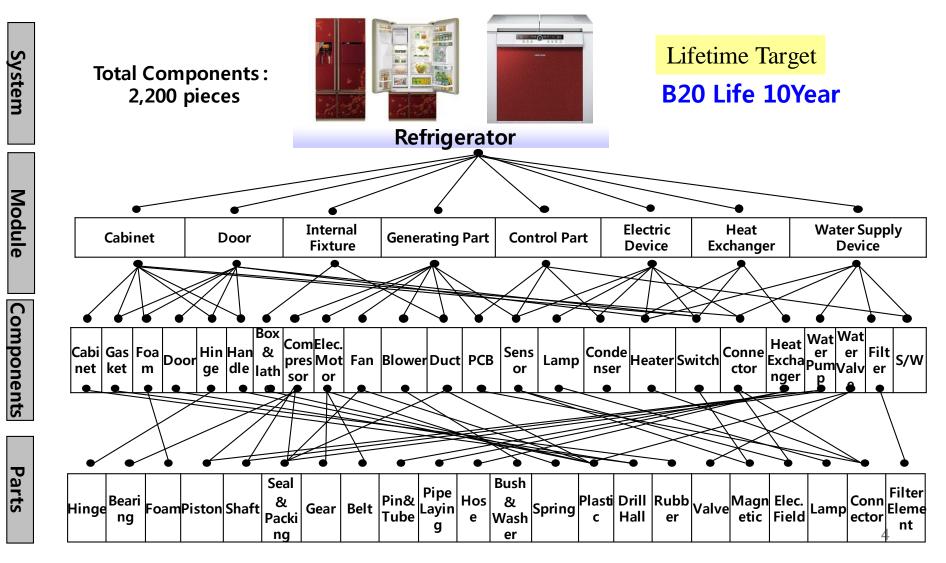
Reliability Design Of Mechanical Systems Such as Compressor Subjected To Repetitive Stresses


2021. 02. 25

Woo Seong-woo

Addis Ababa Science & Technology University


Systems Engineering: Automobile


 \Rightarrow To improve performance or reducing cost, product will be designed yearly

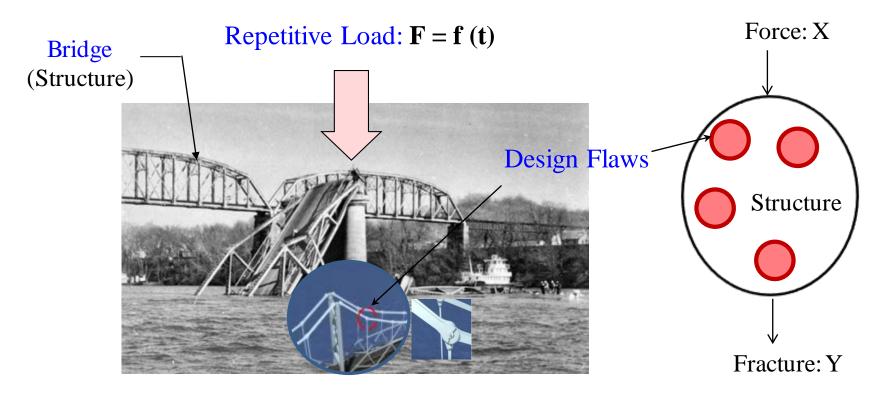
 \Rightarrow By reliability testing, engineer should find the design flaws of product module ²

Systems Engineering: Airplane

Systems Engineering: Refrigerator

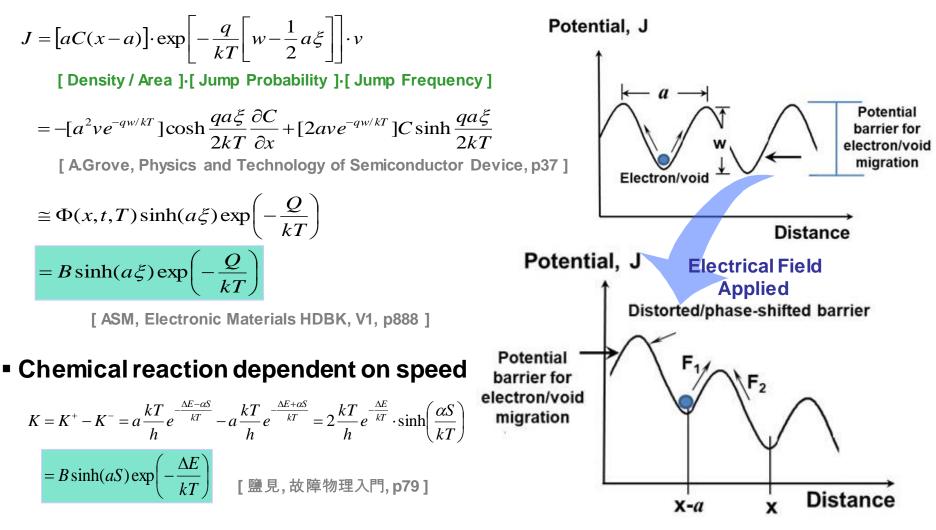
Definition of Reliability

Ability of an item to perform a required function under <u>stated</u> environmental and operational conditions for a specified period of time



Product reliability: $R(L_B) = 1 - F(L_B) = e^{-\lambda L_B} \cong 1 - \lambda L_B$

Reliability can be achieved without design failures


Failure Mechanics and Design

□ Failure mechanics and product designs (material/shape)

How to find the design flaws with rare probability (Poisson distribution) \rightarrow Solution: Reliability testing under accelerated life testing

- Solid–state diffusion of impurities (void/hole) in silicon
 - Electromigration-induced voiding / Build-up of chloride ions / Trapping of electrons or holes

Acceleration Factor (AF)

Junction energy in silicon

$J = \left[aC(x-a)\right] \cdot \exp\left[-\frac{q}{kT}\left[w - \frac{1}{2}a\xi\right]\right]$ $= B\sinh(a\xi)\exp\left(-\frac{Q}{kT}\right)$

• Low Effect, $TF = C(S)^{-1} \exp\left(\frac{Q}{kT}\right)$

• Medium Effect, $TF = A(S)^{-n} \exp\left(\frac{Q}{kT}\right)$

• High Effect,
$$TF = D \exp(-aS) \exp\left(\frac{Q}{kT}\right)$$

Acceleration Factor (Medium Stress)

$$AF = \left(\frac{S}{S_o}\right)^n \exp\left[\frac{Q}{k}\left(\frac{1}{T_o} - \frac{1}{T}\right)\right]$$

$$TF = B[\sinh(aS)]^{-1} \exp\left(\frac{Q}{kT}\right)$$
Inverse
$$F = B[\sinh(aS)]^{-1} \exp\left(\frac{Q}{kT}\right)$$

$$F = B[\sin(aS)]^{-1} \exp\left(\frac{Q}{kT}\right)$$

$$F = B[\sin(aS)]^{-1} \exp\left(\frac{Q}{kT}\right)$$

$$F = B[\sin(aS)]^{-1} \exp\left(\frac{Q}{kT}$$

D Power in Multi-port System (P= $e(t) \times f(t)$)

: Power might be defined as the product of effort and flow

System Units (or Parts)	Effort, e(t)	Flow, <i>f(t)</i>	-	
Mechanical translation	Force component, F(t)	Velocity component, V(t)		
Mechanical rotation	Torque component, $\tau(t)$ Angular velocity, $\omega(t)$			
Compressor	Pressure difference, $\Delta P(t)$	Volume flow rate, Q(t)	-	
Electric	Voltage, V(t)	Current, <i>i(t)</i>		
$TF = A(S)^{-n} \exp(S)$	$\left(\frac{Q}{kT}\right) = A(e)^{-\lambda} \exp\left(\frac{Q}{kT}\right)$			
(stress confrom eff		
$AF = \left(\frac{S_1}{S_0}\right) \left\lfloor \frac{E_a}{k} \right\rfloor$	$\left(\frac{1}{T_0} - \frac{1}{T_1}\right) = \left(\frac{e_1}{e_0}\right)^{\lambda} \left[\frac{E_a}{k}\right]^{\lambda}$	$\frac{1}{T_0} - \frac{1}{T_1} \bigg) \bigg] \checkmark$	9	

Sample Size Equation

If product follows Weibull distribution, reliability function is defined as:

$$R(t) = 1 - x = e^{-\left(\frac{t}{\eta}\right)^{\beta}} \quad \text{logarithm} \quad L_{BX}^{\beta} = \left(\ln\frac{1}{1-x}\right) \cdot \eta^{\beta}$$

Characteristic life η_{α} for the confidence level 100(1 - α):

$$\eta_{\alpha}^{\beta} = \frac{2r}{\chi_{\alpha}^{2}(2r+2)} \cdot \eta_{MLE}^{\beta} = \frac{2}{\chi_{\alpha}^{2}(2r+2)} \left(\sum_{i=1}^{n} t_{i}^{\beta} \right) \quad \text{Testing data}$$

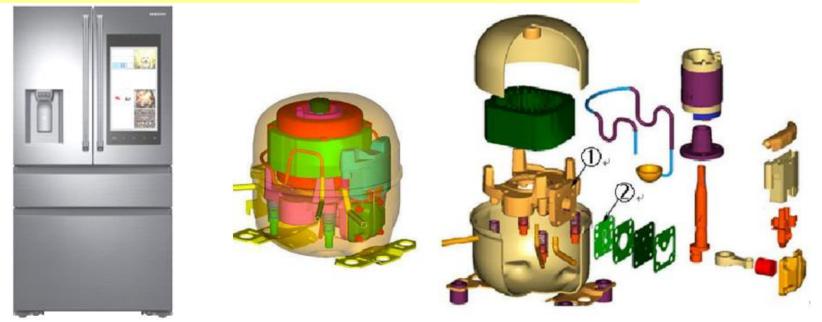
where η_{MLE} from the Maximum Likelihood Estimation $\eta_{MLE}^{\beta} = \sum_{i=1}^{n} \frac{t_i^{\beta}}{r}$

Assessed BX Life: $L_{BX}^{\beta} = \frac{2}{\chi_{\alpha}^{2}(2r+2)} \cdot \left(\ln \frac{1}{1-x}\right) \cdot \sum_{i=1}^{n} t_{i}^{\beta}$

Sample Size Equation from approximation of BX life

BX life:
$$L_{BX}^{\beta} = \frac{2}{\chi_{\alpha}^{2}(2r+2)} \cdot \left(\ln \frac{1}{1-x}\right) \cdot \sum_{i=1}^{n} t_{i}^{\beta} \ge \frac{2}{\chi_{\alpha}^{2}(2r+2)} \cdot \left(\ln \frac{1}{1-x}\right) \cdot (n-r) \cdot h^{\beta}$$

1) Chi-square Approx.:
For C.L.=60% and r < 4
2) Logarithmic Approx.:
Cumulative Failure x \le 20%


$$\frac{r}{\frac{\chi_{\alpha}^{2}(2r+2)}{2(a)}} \frac{1-\alpha}{1-\alpha}}{\frac{1}{2} - \frac{1}{2}} \cdot \frac{\chi_{\alpha}^{2}(2r+2)}{2} \cdot \left(\frac{L_{BX}^{\beta}}{2} = \frac{1}{(r+1)} \cdot x \cdot n \cdot h^{\beta}\right)$$

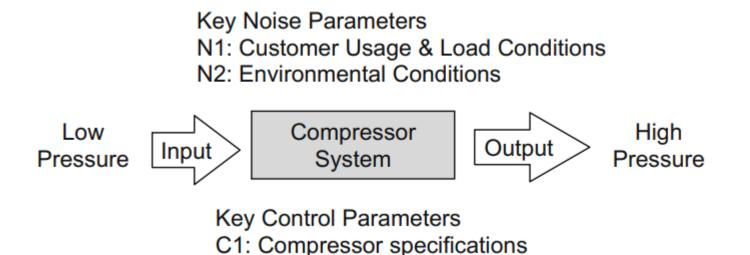
$$= (r+1) \quad \text{Rearrange}$$
Sample Size Equation: $n \ge (r+1) \cdot \frac{1}{r} \cdot \left(\frac{L_{BX}}{4F \sqrt{h}}\right)^{\beta} + r$

11

'a /

Refrigerator and redesigned compressor

Refrigerator

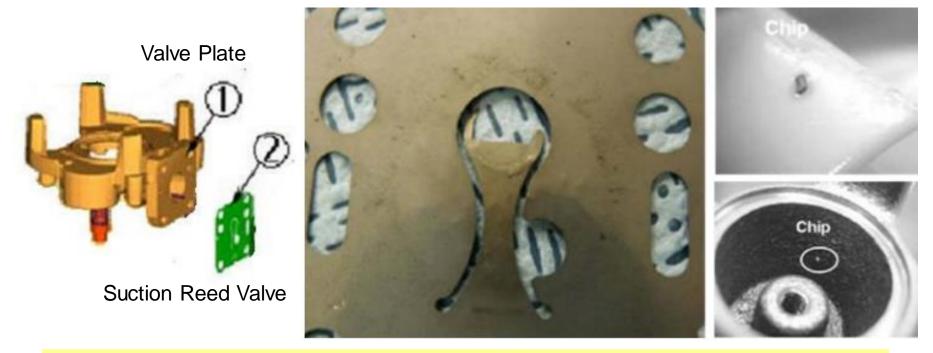

Compressor System

There are design faults in compressor, but we don't know which parts are

 \Rightarrow Compressor lifetime depends on the design faults of parts

 \Rightarrow To finding them, it require new reliability methodology ₁₂

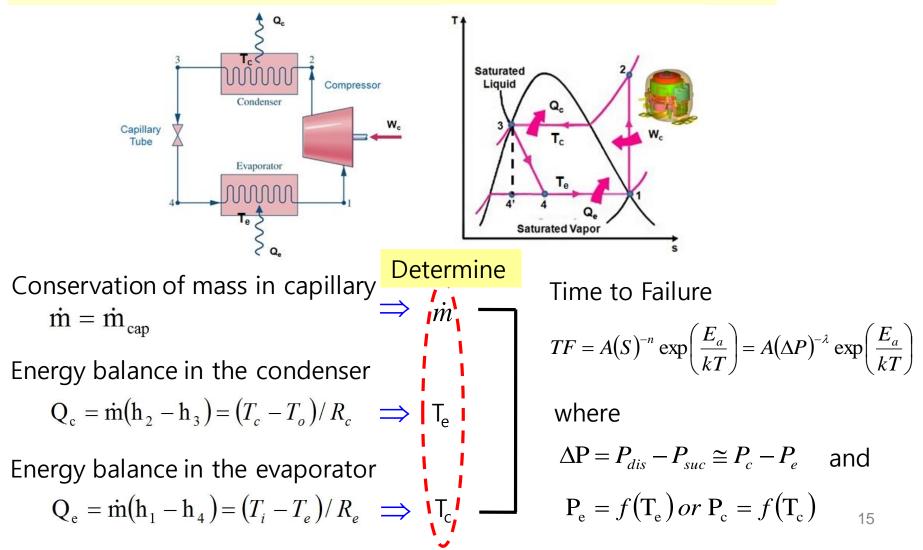
Parametric design schematics



 \Rightarrow Reliability methodology: 1) failure analysis for returned product

 \Rightarrow 2) Parametric ALT and its design modification

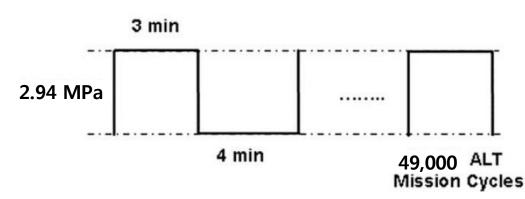
 \Rightarrow 3) Finally, checking if the lifetime target is achieved


Damaged products in field

There were a lot of cracks on compressor part

- \Rightarrow It came from fragile structure (design flaws)
- \Rightarrow By reproducing by parametric ALT, we can correct them $_{14}$

Load Analysis for Accelerated Testing



Accelerated Factor

$$AF = \left(\frac{S_1}{S_0}\right)^n \left[\frac{E_a}{k} \left(\frac{1}{T_0} - \frac{1}{T_1}\right)\right] = \left(\frac{\Delta P_1}{\Delta P_0}\right)^\lambda \left[\frac{E_a}{k} \left(\frac{1}{T_0} - \frac{1}{T_1}\right)\right]$$

System Conditions		Worst Case	ALT	AF (λ =2)
Pressure (MPa)	High-side	1.27	2.94	5.36 ①
	Low-side	0.0	0.0	
	ΔP	1.27	2.94	
Temperature (°C)	Dome	90	120	1.37 ②
$TotalAF (= (\textcircled{0} \times \textcircled{2}))$				7.32

> By applying duty cycle F on compressor

⇒ Search out the design failure

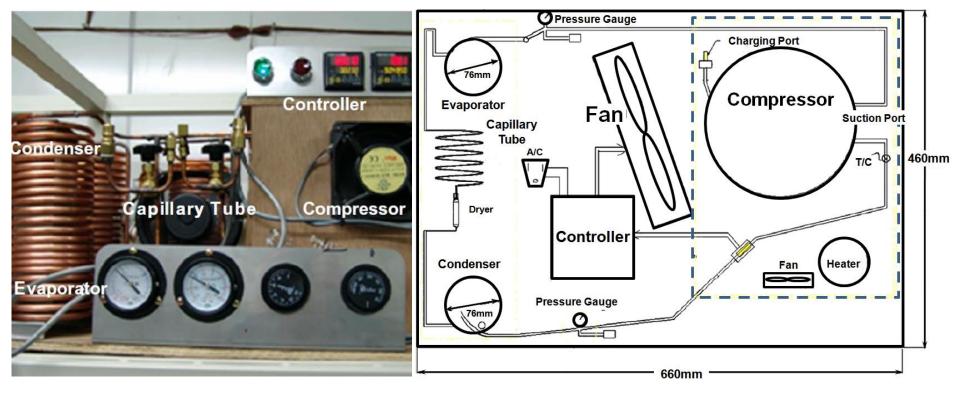
 \succ Calculation of the mission cycle, h_a

Lifetime target of domestic compressor: **B**₁ life 10 years

$$n \ge (r+1) \cdot \frac{1}{x} \cdot \left(\frac{L_{BX}^*}{AF \cdot h_a}\right)^{\beta} + r \qquad (1) \ x = 0.01 \ (B1 \ life)$$

$$(2) \ r = 0 \ (No \ Failure)$$

$$(3) \ AF = 7.32$$

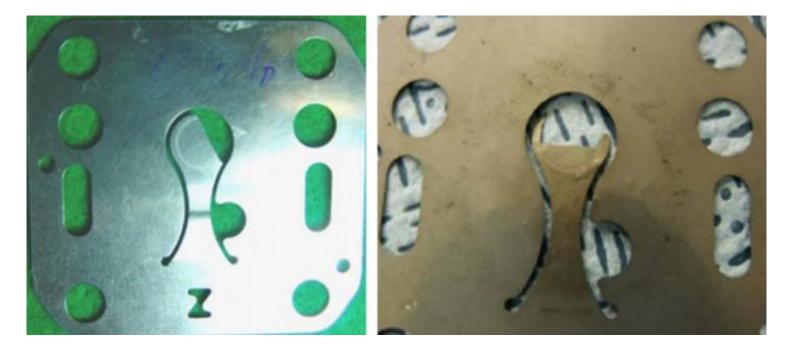

Total sample size of domestic compressor: n=100

Compressor Lifetime: 98 cycles/day×365day/year×10 years = 357,6700 cycles

 \Rightarrow Specification(h_a): if there is no problem in 49,000 cycles,

 \Rightarrow We can guarantee compressor lifetime target: B1 life 10 years

Equipments used in accelerated life testing

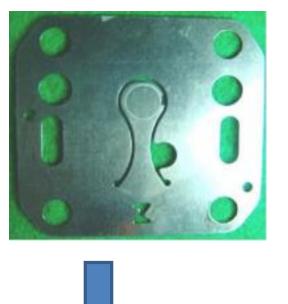

Testing Zig

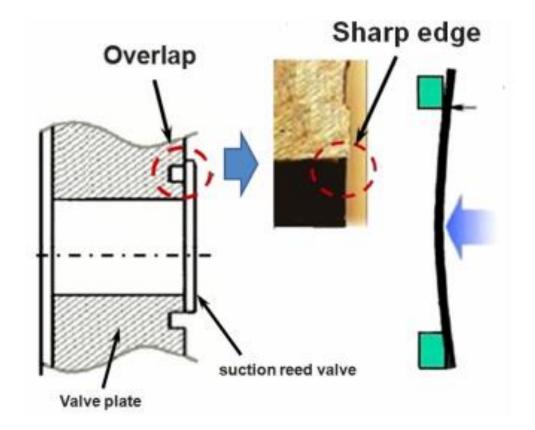
Schematic Diagram

 \Rightarrow We can proceed the parametric ALT with equipment

Results of 1st ALT

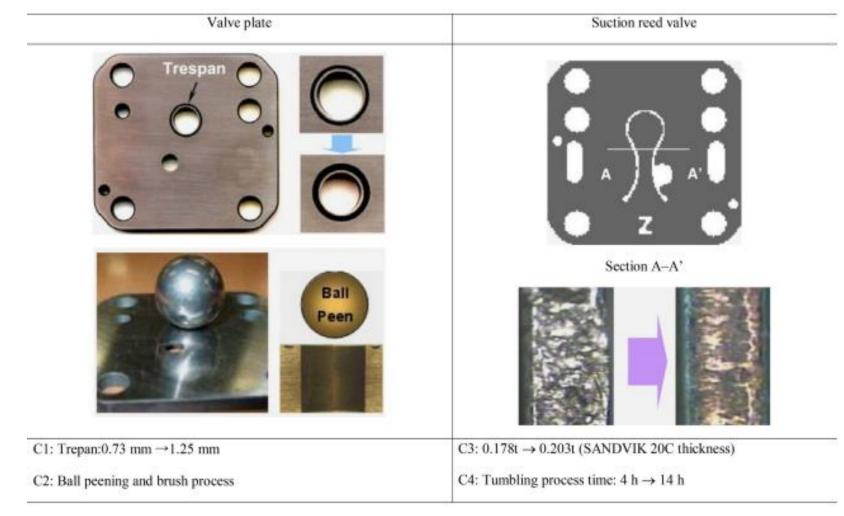
: Compressor locked due to the fractured suction reed valve at 10,500 cycles


Field

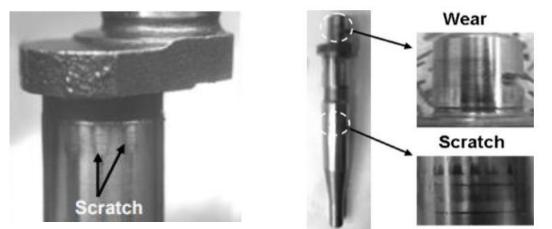


By parametric ALT, we could reproduce the compressor failure in field

➢ Results of 1st ALT


Fractured suction reed valve

Root causes: a) Overlapped suction reed valve b) valve plate with sharp edge


Redesigned valve plate and suction reed valve

➢ Results of 2nd ALT

: Compressor locked at 17,000 cycles .

Root cause : Crankshaft material

Redesigned crankshaft

Old Design

FCD500 + No Heat Treatment

New Design

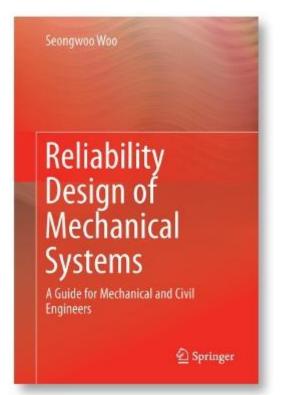
FCD500 + Heat Treatment

By parametric ALT, we can modify the problematic crankshaft in compressor

Summary of Parametric ALT Results

Parametric ALT	1st ALT	2nd ALT	3rd ALT
Farametric AL1	Initial Design	Second Design	Last Design
In 49,000 cycles, there are no problems in the compressor	10,500 cycles: 1/100 locking	17,000 Cycles: 3/100 locking	49,000 cycles: 100/100 OK
Structure		Wear Scratch	-
Action plans	C1: Trepan size: 0.73 mm→1.25 mm C2: Adding ball peening and brush process C3: SANDVIK 20C: 0.178t→0.203t C4: Extending tumbling: 4 h→14 h	C5: FCD500 + No Heat Treatment → FCD500 + Heat Treatment on the crank shaft	12

Because there is no problem to 49,000 cycles,


 \succ Compressor achieves the lifetime target – B1 life 10 years ²³

Conclusion

S. Woo <u>Reliability Design of Mechanical Systems</u> A Guide for Mechanical and Civil Engineers

It enables mechanical and civil engineers to find the designs flaws and achieve the targeted product reliability. It also suggests a variety of case studies on the mechanical system. Presents Taguchi method's alternative experimental Methodology. **Describes new parametric ALT** methods for reliability quantitative test specifications (RQ).

🙆 Springer

1st ed. 2017, XII, 310 p. 249 illus., 132 illus. in color.

/hank you:

