A Data Driven approach for the measurement of ¹⁰Be/⁹Be in Cosmic Rays with magnetic spectrometers

F.Nozzoli - C.Cernetti INFN/TIFPA - Trento University

Trento Institute for Fundamental Physics and Applications

1st Electronic Conference on Universe - ECU2021

Beryllium in cosmic rays

F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2021

Secondary nuclei in CR

Secondary CR are produced from collisions of primary CR with the interStellar medium (ISM)

The fluxes of the secondary species are very important for the understanding of the origin and propagation of cosmic rays

- They carry information on the history of the travel and properties of ISM,
- Most abundant species: Li, Be, B and light isotopes (³He and D)

Cosmic Ray Propagation parameters

F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2021

Cosmic Ray Propagation parameters

Cosmic Ray Propagation parameters

Radioactive Cosmic Rays

Radioactive isotopes are sensitive to CR residence time in the Galaxy. Used as cosmic clocks, they constrain H²/D solving the existing H/D degeneracy.

¹⁰Be ($T_{1/2}$ =1.39My) ²⁶Al ($T_{1/2}$ =0.72My) ³⁶Cl ($T_{1/2}$ =0.30My) ⁵³Mg ($T_{1/2}$ =3.74My) ⁶⁰Fe($T_{1/2}$ =2.6My)

Among them Beryllium is the most promising for isotope separation at high energy

(some information encoded in Be/B

but current measurements are:

- affected by large uncertainties
- limited to low energies

F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2021

¹⁰B status and impact on antimatter background

AMS-02 data Li/C B/C and Be/B used to tune USINE (semi analytical propagation model)

E_{k/n} [GeV/n]

in halo thickness parameter H, on the expected secondary positron flux. An improved knowledge of H will help in the study of the unknown Positron source (Pulsar, DM, ... ?)

¹⁰Be/⁹Be can be predicted by model with uncertainties much larger than the direct measurement obtained by MAGNETIC SPECTROMETERS in SPACE

Example: Beryllium measured by PAMELA Spectrometer

The mass resolution in magnetic spectrometers

... this allows to get rid of Monte Carlo predictions of the isotope mass distributions ...

The "Data Driven" approach (how to get rid of MC)

A self-consistent approach to extract isotope mass distributions from data itself. (it is a solution of the 3x3 equation system of the mass distributions: "templates")

An intuitive/graphical view: The unknown templates are related by: $\delta M/M = constant$ Linear transf. approximation: templates are related by (known) coordinate dilatation

F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2021

The "Data Driven" approach (how to get rid of MC)

A self-consistent approach to extract isotope mass distributions from data itself. (it is a solution of the 3x3 equation system of the mass distributions: "templates")

An intuitive/graphical view: The unknown templates are related by: $\delta M/M = constant$ Linear transf. approximation: templates are related by (known) coordinate dilatation

F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2021

The "Data Driven" approach (all the boring Math)

A 3x3 equation system of the unknown "templates": T_7 , T_9 , T_{10} (fixing isotopic fractions f_x)

$$D(x) = f_7 T_7 + f_9 T_9 + f_{10} T_{10} => \text{Measured mass distribution}$$

$$A_{7,9} D(x) = f_7 T_9 + f_9 A_{7,9} T_9 + f_{10} A_{7,9} T_{10} => A_{7,9} \text{ known dilatation (7=>9)}$$

$$A_{7,10} D(x) = f_7 T_{10} + f_9 A_{7,10} T_9 + f_{10} A_{7,10} T_{10} => \text{ known dilatation (7=>10)}$$

Can be solved iteratively knowing that $f_7 > f_9 > f_{10}$:

$$T_{7} = \frac{1}{f_{7}} \left[D - \frac{f_{9}}{f_{7}} A_{7,9} D - \frac{f_{10}}{f_{7}} A_{7,10} D \right] + \text{ (main and "known" quantities)} \\ + \frac{f_{9}f_{9}}{f_{7}^{2}} T_{G1} + \frac{f_{9}f_{10}}{f_{7}^{2}} T_{G2} + \frac{f_{10}f_{9}}{f_{7}^{2}} T_{G3} + \frac{f_{10}f_{10}}{f_{7}^{2}} T_{G4} \text{ (small corrections: "ghost")} \\ T_{G1} = A_{7,9}T_{9} \simeq L_{7,x_{G1}}T_{7} @ 11.5 amu \\ T_{G2} = A_{7,9}T_{10} \simeq L_{7,x_{G1}}T_{7} @ 12 amu$$

$$T_{G2} = A_{7,9}T_{10} \cong L_{7,x_{G2}}T_7 \oplus 13 \text{ and}$$

 $T_{G3} = A_{7,10}T_9 \simeq L_{7,x_{G3}}T_7 \oplus 13 \text{ and}$
 $T_{G4} = A_{7,10}T_{10} \simeq L_{7,x_{G4}}T_7 \oplus 14 \text{ and}$
 $T_{G4} = A_{7,10}T_{10} \simeq L_{7,x_{G4}}T_7 \oplus 14 \text{ and}$

The map of χ^2 configurations

A χ^2 value can be evaluated for each configuration in the plane < f_7 and f_{10}/f_9 > leading to a 2D confidence interval of the physical minimum.

statistical bootstrap performed to treat the naive un-physical solutions: $f_7 = 1$, $f_9 = 1$, $f_{10} = 1$ (characterized by a null χ^2 value) this is a detail important only for scarce statistics.

Comparison with previous measurements ⁷Be/Be

-Data Driven results for PAMELA-ToF and PAMELA-Calo are in reasonable agreement

-Both are compatible with published (MC based) PAMELA result.

a "new" measurement for ¹⁰Be/⁹Be

-Data Driven results for PAMELA improves our knowledge of ¹⁰Be/⁹Be at "high-Energy"

-Compatibility with theoretical expectations

Example of the Impact on Halo thickness measurement

The comparison of ¹⁰Be/⁹Be (and the complementary ⁷Be/Be) with theory models (once tuned accounting for these measured ratios) will provide a \sim 25% precision measurement for H parameter that is currently affected by large uncertainties.

conclusions

Be isotopic composition is a key quantity to improve CR propagation models

¹⁰Be is subdominant, its measurement requires a very good MC simulation

The very good Beryllium data collected by PAMELA experiment has not provided the important ¹⁰Be/⁹Be measurement because of a not perfect MC simulation

Developed a "Data Driven" approach to measure ¹⁰Be/⁹Be without the use of MC

Application of "Data Driven" analysis to Beryllium events collected by PAMELA allows a new measurement of ¹⁰Be/⁹Be in the range 0.2-0.85 GeV/n

This measurement is in agreement with theoretical expectations and allows the reduction of uncertainties in CR propagation parameters

The "Data Driven" approach is promising for a complete analysis of PAMELA data and for the forthcoming isotopic measurements of Be with AMS and HELIX