

Dynamics of disk and elliptical galaxies in Refracted Gravity

Valentina Cesare

Dipartimento di Fisica, Università di Torino

Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino

1st Electronic Conference on Universe

Table of contents

- Introduction
- Refracted Gravity (RG)
- Disk galaxies: the DiskMass Survey
 - Rotation curves and vertical velocity dispersions
 - A universal combination of RG parameters
 - The Radial Acceleration Relation
- Elliptical galaxies: three EO galaxies in the SLUGGS survey
 - The mass model
 - Results
- Future projects
- Conclusions

1. Introduction

RADIAL ACCELERATION RELATION

2. Refracted Gravity (RG)

Classic theory of gravity inspired to electrodynamics in matter not resorting to dark matter

with $\{\epsilon_0, Q, \rho_c\}$ free universal parameters

1.0 8.0 Q = 1/2 Q = 3/4^ل 0.6 Q = 2 0.4 2 -2 4 N $\ln(\rho/\rho_c)$

Cesare et al. (2020b)

Matsakos & Diaferio (2016), Cesare et al. (2020b)

3. Disk galaxies: the DiskMass Survey

- Analysis in Cesare et al. (2020b)
- 30 disk galaxies from the **DiskMass Survey (DMS)** (Bershady et al. 2010a)
- Density model:
 - a) Stellar disk: $\rho_d(R, z) = \frac{\Upsilon}{2h_z} I_{d,interp}(R) \exp\left(-\frac{|z|}{h_z}\right)$
 - **b)** Spherical stellar bulge: $\rho_{\rm b}(r) = -\frac{\Upsilon}{\pi} \int_{r}^{+\infty} \frac{\mathrm{d}I_{\rm b}(R)}{\mathrm{d}R} \frac{1}{\sqrt{R^2 r^2}}$, where

$$I_{\rm b}(R) = I_{\rm e} \exp\left\{-7.67 \left[\left(\frac{R}{R_{\rm e}}\right)^{1/n_{\rm s}} - 1 \right] \right\}$$

c) Atomic and molecular gas: $\rho_{\text{atom,mol}}(R, z) = \Sigma_{\text{atom,mol,interp}}(R) \delta(z)$

- Successive Over Relaxation **Poisson solver** to obtain RG potential
- MCMC to estimate the M/L, Υ , the disk-scale height, h_z , and the three RG parameters, ϵ_0 , Q and ρ_c

- From rotation curves
- From rotation curves and vertical velocity dispersions

3.1 Rotation curves and vertical velocity dispersions

3.2 A universal combination of RG parameters

Cesare et al. (2020b)

3.3 The Radial Acceleration Relation

4. Elliptical galaxies: three EO galaxies in the SLUGGS survey

- > Analysis in Cesare et al., in prep.
- ➢ 3 E0 galaxies from the SLUGGS survey: NGC 1407, NGC 4486 (M87), and NGC 5846
- ▶ Spherical systems: $\varepsilon \in [0,0.15] \Leftrightarrow q = 1 \varepsilon \in [0.85,1]$
- > Kinematics probed up to $\sim 10 R_e$ thanks to the detection of GCs
- ➤ Two populations of GCs (blue and red) ⇒ stronger constraint for RG

https://ned.ipac.caltech.edu/uri/N ED::Image/gif/1994DSS...1...0000:/ Bd/NGC_1407:I:IIIaJ:dss1

15

4.1 The mass model

Model, at the same time, of the root-mean-square velocity dispersion of the stars, the blue GCs, and the red GCs in each E0 galaxy from spherical Jeans analysis:

4.2 Results

- Global good description of the kinematic profiles of the three tracers with mass-to-ratios consistent with SPS models and anisotropy parameters consistent with the literature (Pota et al. 2015)
- Some points of the kinematic profiles of blue GCs in NGC 4486 and NGC 5846 not interpolated: systems treated as isolated and not embedded in larger systems
- \succ RG parameters consistent between the individual galaxies (1 σ) and with the DMS ($Q, \mathcal{P}_{c}; 3\sigma$)
- \succ 10 σ tension between the ϵ_0 from the three EO galaxies and the DMS

5. Future projects

- Extension of the current analysis to elliptical galaxies with different ellipticities belonging to SLUGGS and ePN.S surveys
- Dwarf galaxies and GCs
- Galaxy clusters (two encouraging results in Matsakos & Diaferio (2016))
- Covariant formulation of the theory (Sanna et al. in preparation)
- Linear perturbation theory for the density field
- Power spectrum of the CMB anisotropies
- Formation and evolution of cosmic structures (N-body simulations)

6. Conclusions

- RG properly reproduces the kinematics of DMS galaxies
- Introducing the vertical velocity dispersions we obtain disk scale heights smaller than observations → observational bias, not issue of the theory
- A unique combination of $\{\epsilon_0, Q, \rho_c\}$ is likely to be found to properly describe DMS kinematic profiles
- RG predicts a RAR with the correct asymptotic limits, with too large intrinsic scatter and with correlations between residuals and galaxy properties → further investigation with SPARC (Lelli et al. 2016)
- RG can model the kinematics of both flattened and spherical systems
- RG can compete with other theories of gravity to describe the dynamics on galactic scale, deserving further investigation

THANK YOU FOR THE ATTENTION! ③