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Abstract: For the construction of a generally relativistic quantum field theory,1

background-independent quantum gravity is needed. By assuming the ADM decomposition2

of spacetime, it is possible to define the metric-independent discrete analog of a Fock space for3

quantum gravity on a lattice. This space, known as the spin network, is invariant under the SU(2)4

symmetry and the spatial diffeomorphisms transformations. It is the states space for loop quantum5

gravity. The improved construction of the lattice regularization and cosmological reduction of6

this model is presented in this article. The application of the former procedure to the Hamiltonian7

constraint provides its lattice analog, the domain of which has a natural structure of a sum of8

elementary cells. As a result, the related scalar constraint operator, which spectrum is independent9

of intertwiners, can be defined. The cosmological phase space reduction of lattice gravity requires10

a rigorous application of gauge-fixing conditions. The obtained Hamiltonian constraint is finite11

(without any cut-off introduction) and exact (with the holonomy expansion around the unit element12

of SU(2)). It describes a simple structure of inhomogeneities and anisotropies. Consequently, the13

construction of the quantum evolution of the Universe in terms of transition amplitudes (instead of14

using perturbative approximations) appears to be possible.15
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cosmology; gauge representation of gravity; phase space reduction of lattice gravity; loop quantum17
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1. Introduction19

Physicists have been trying to construct the hypothetical theory of quantum gravity for20

decades. One of the recent approaches, formulated in the late nineties of the twentieth century,21

is canonical loop quantum gravity (LQG) [1–4]. This approach assumes a systems-equivalent (SE),22

thus metric-independent description in a noncovariant formalism. LQG defines a nonperturbative23

formalism and aims to achieve background-independent results (by restoring unmodified metric24

tensor coupling). So far, this last point, however, remains wishful thinking — the (semi)classical limit25

of this theory has not been calculated. Moreover, contrary to the idea of LQG, several perturbative26

models based on its formalism have been intensively developing, for instance in [5–7].27

The approach proposed in this article postulates to more strictly impose the methodology, which28

led to the formulation of LQG. In particular, it is required that the SE description will be applicable not29

only to quantum gravity but to the whole generally relativistic quantum field theory (QFT). Moreover,30

the quantization is assumed to be constructed in the standard Dirac-Wigner procedure [8,9], known31

from quantum mechanics. Furthermore, the mathematical formalism that describes real physical32

processes is restricted to uniformly define all the representatives of the phenomena that belong to the33

same classes. Finally, all approximations and simplifications are limited as follows. If any quantity is34
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approximated or constrained, all analogous quantities have to be consistently restricted. Moreover,35

one cannot partially remove this restriction for some objects after some stage of derivations.36

This methodological consequence in the construction of the relativistic field theory leads to37

promising results. Although the generally relativistic QFT of all Standard Model interactions is far38

from being even sketched, the early outcomes regarding the gravitational field are remarkable —39

see [10] for a review. By consistently imposing approximations in the construction of gauge fields40

lattice representations, the structure of results simplifies [11]. In particular, conversely to LQG, all the41

quantities related to different first-class constraints decouple on a lattice [12]. Moreover, the domain of42

the Hamiltonian constraint becomes separable [11]. Furthermore, by satisfying the Wigner theorem43

[9,13], the quantum states space, associated with each link of the lattice, can be defined as the standard44

Hilbert space for gauge fields [10,14] as in LQG. Finally, by imposing gauge fixing conditions on the45

lattice, turns out that the resulting cosmological framework describes local anisotropies without the46

introduction of perturbations [15,16].47

The overview of the aforementioned early results of the new program toward the general48

relativistic formulation of QFT is presented in this article.49

2. Methods50

The SE formalism of LQG is based on the well-known quantization method of the gauge fields
constraint systems [17]. In the case of the Einsteinian gravity [18], the constraints decomposition is
revealed by the Legendre transform of the Einstein-Hilbert action of the metric field. Introducing the
following decomposition:

gµνdxµdxν = (NaNa − N2)dt2 + 2Nadtdxa + qabdxadxb . (1)

one finds that the elements inside the Hamiltonian, which are contracted with N and Na, are different
first-class constraints [19]. To the set of these elements, which generate gauge symmetries known
as the temporal and spatial diffeomorphisms, respectively, one can introduce an additional internal
invariance. The action proposed in [20], which corresponds to this extension, is formulated in terms of
the following gauge fields:

Ai
a :=

1
2

εijkΓjka + γΓi
0a = −2 tr

(
Aaτi) , Ea

i :=
δSHOLST

δ∂t Ai
a
=
√

q ea
i = −2 tr

(
Eaτi) , (2)

known as the Ashtekar-Barbero variables [21,22]. Here, Γα
βa is the Lorentz connection coefficient in51

the spatial basis, where α, β, ... are the Minkowski variables, and i, j, ... describe the related positive52

Euclidean sector. The decomposition in (1) led to the splitting of the spacetime indices µ, ν into the53

temporal gauge sector and the spatial dynamical sector. The latter is represented by the metric qab (q54

is its determinant). The symbol γ is the real Barbero-Immirzi parameter and the su(2) generator τi55

satisfies the algebra [τj, τk] = εijkτi.56

The Hamiltonian method leading to the definition of the momentum in (2) is the cause of the
noncovariant formalism (Eµ

i equals identically zero). In this formalism, the Poisson algebra of the
Ashtekar-Barbero variables is canonical,{

Ai
a(x), Eb

j (y)
}

q,p
= −γκ

2
δb

a δi
j δ3(x− y) ,

{
Ai

a(x), Aj
a(y)

}
q,p
=
{

Ea
i (x), Eb

j (y)
}

q,p
= 0 , (3)

where the brackets have been derived regarding the metric field canonical pair, qab and pab [19].57

The canonicity of the gravitational variables suggests postulating the Heisenberg-DeWitt [23,24]
form of the operators,

Âi
a| . . .〉 = Ai

a| . . .〉 , Êa
i | . . .〉 = −ik̄

δ

δAi
a
| . . .〉 . (4)
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At each point, they should act on the states of a Hilbert space. However, to preserve SE description at58

the quantum level, the field operators space cannot be defined as a Fock space. The solution to this59

problem has been found by using the metric-independent Ashtekar-Lewandowski [25,26] measure on60

a gauge-invariant lattice.61

Classically, the lattice is embedded in the spatial sector of the four-dimensional
spacetime-representing manifold by defining the holonomy

h−1
l := P exp

(
− θi

lτi
)

, θi
l =

∫ l

0
ds ˙̀ a(s)Ai

a
(
`(s)

)
, (5)

which is the functional of field Ai
a. In LQG, the continuous-to-discrete transition from the distribution

of this field into the distribution of the links-located holonomies is determined by reversing the
expansion

h∓1
l [A] = 1∓ lAl +

l2

2
Al Al ∓

l2

2
∂l Al +O

(
l3) . (6)

This expansion along short links is the inverse exponential map from the representation to the group62

element. However, by neglecting the quadratic order terms, as in LQG [2–4], one does not obtain the63

map, which guarantees the correct construction of the gauge field representations on a Hilbert space64

[14]. Moreover, the expansion in (6) does not necessarily provide the Wigner-symmetric representation65

of operators [9], as has been conversely suggested in the states space construction for LQG [27].66

To ensure the rigorous transfer of the classical gauge symmetry to quantum states defined as
representations of the holonomy, this quantity must be expanded around the unit element of SU(2),

h∓1
l [θ] = 1∓ θl +

1
2

θl θl ±
1
2
[θl , θl ] +O

(
θ3

l
)

. (7)

The last term expresses Lie brackets of symmetric quantities, thus it vanishes. The short links and
nearly linear links approximations of the parameter θi

l in (5) lead to the following expansion:

θl =
l
2
(

Al(v) + Al(v+l)
)
+O

(
l3) . (8)

It is worth noting that this result coincides with the expansion in (6), in which the derivative becomes67

approximated by a difference.68

The postulates of short links and nearly linear links are reasonable assumptions imposed on69

the lattice’s structure. By removing the latter assumption, one could not introduce a consistent, i.e.70

up to the quadratic order in the regulator, relation between holonomy and connection (see (10)).71

By strengthening this assumption to linear links (and possibly weakening the former one into the72

inequalities 0 ≤ l < 1), one will simplify the theory a lot. In this latter case, the lattice will become73

piecewise linear with holonomies of constant connections Āl at each piece (along each link). As a74

result, the operators ˆ̄Al (constant along links) will automatically become the Wigner operators [10],75

because the parameters in (7) will equal θl = l Āl . Moreover, all the quantities related to different76

first-class constraints will decouple on a piecewise linear lattice [12]. Furthermore, the domain of the77

Hamiltonian constraint will become separable [11].78

The choice of the piecewise linear lattice, suggested by the Hilbert space construction, does
not modify the algebra of the lattice-smeared gravitational field representatives, known as the
holonomy-flux algebra. The lattice regularization of the gravitational momentum is introduced
via the following identity:

σ|E|−
1
2 εijkEb

j Ec
k =

4
γκ

εabc{V(R), Ai
a
}

, (9)
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cf. [2,4], where the value of σ = ±1 depends on the sign of the determinant of Ea
i , namely E. The

volume V(R) of the region R can be approximated by the functional of the momenta fluxes. By using
the original short links expansion in (6), the gravitational field becomes lattice regularized via the
expression

hl〈v〉 − h−1
l 〈v〉 = l

(
Al(v) + Al(v+l)

)
+O

(
l3) = 2l Āl +O

(
l3) , (10)

cf. [11]. In the last equality, the constancy condition Al(v) = Al(v+l) is assumed, where v and v+l79

are the endpoints of the link l.80

Independently of the selection of the analytical or linear category of links of the gauge-invariant
lattice, the first-class system of constraints restricts the action of fluxes to the form, which does not mix
the constraints application results [10]. The Gauss constraint, which implements the internal symmetry
of the Al field on the lattice, introduces appropriate projectors into the invariant representations at the
endpoints of links [28]. Consequently, to preserve the invariance between these endpoints regarding
the algebra of the variables in another first-class constraint, namely the Hamiltonian constraint (see
Fig. 1), the following modification of the flux [12] is needed:

Ḡl
i(R) :=

1
l

∫
l
ds l̇(s) g−1(l(s))∫

Sl(s)
n aEa

i
(
l(s)
)

g
(
l(s)
)

, g, g−1 ∈ SU(2) . (11)

Figure 1. Flux probability distribution between the endpoints of a link

81

The improved representation of the flux through the surface Sl in (11) (n a is normal to this surface)
is its continues distribution along the link l, orthogonal to Sl , in the region indicated by the volume
V(R) = Sl∧ l. The gauge-invariance is implemented by the extra pair of the inverse SU(2) elements.
Then, verifying the algebra of the improved representations of the lattice-smeared Ashtekar-Barbero
variables in (10) and (11), one finds{(

hl− h−1
l

)
, Ḡl

i(R)
}
=

1
2

(
τi
(

hl− h−1
l

)
+
(

hl− h−1
l

)
τi
)

, (12)

cf. [12]. Remarkably, the su(2) generators did not appear between the link’s endpoints, i.e. the82

holonomies remained undivided along the link. The appearance of these generators does not change83

the implementation of the gauge invariance, which has been located at the endpoints and for any84

internal direction. Moreover, the result in (12) is the same regarding choosing either an analytical or a85

linear link.86

3. Results and Discussion87

Independently of the selection of a piecewise analytical or linear lattice, the regularization of
connections by holonomies in (10) leads to the discrete structure of the Hamiltonian constraint. This
object takes the form analogous to the following expression:

− 2σ

γκ2 ∑
v

N〈v〉εpqr tr
[(

hqr〈v〉 − h−1
qr 〈v〉

){
V(R〈v〉),

(
hp〈v〉 − h−1

p 〈v〉
)}]

. (13)

This particular expression corresponds to the piecewise linear lattice embedded in the spatial sector of
spacetime by identifying the the links with the edges in the quadrilaterally hexahedral tessellation of
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this spatial sector [10]. The complete formula of the Hamiltonian constraint is the sum of the expression
in (13), known as the Euclidean term and the so-called Lorentzian term. The latter one can be derived
from the Euclidean term by using the identity (introduced in [1,2]) based on the boost sector Γi

0a of
the connection in (2). If one selected a different discretization, for instance, a triangularization, one
would not be able to replace the integral in the continuous formulation of the Hamiltonian with the
equivalent Riemann sum, ∫

d3x f (x) = lim
l̄→0

∑
v

f (R〈v〉) l̄ 3〈v〉 . (14)

It is also worth emphasizing that the separable structure of the regions R〈v〉 with volumes l̄ 3〈v〉 is88

determined by the diffeomorphism symmetry between these regions. This symmetry is implemented89

at their boundaries and ensures the preservation of the orientations between the bounded regions. The90

introduction of the separable structure is possible by the precise indication of the boundaries, which91

are the six faces of each quadrilateral hexahedron. It is worth mentioning that this structure is known92

as a fiber sum. The just described restrictions concern the construction of the lattice, in which nodes v93

label the basic separable regions in (13). These restrictions are also the reason that prevents indicating94

the analogous classical discrete expression of the Hamiltonian constraint on a piecewise analytical95

tetrahedral lattice, by using the original methods of LQG [1–4].96

The classical discrete formulation of the Hamiltonian constraint on a gauge-invariant lattice is97

a significant result. It allows for the application of the standard canonical quantization procedure98

from QFT. This application will lead to the quantum theory with a known method of derivation of the99

(semi)classical limit. Moreover, by imposing the phase space reduction on the lattice system with gauge100

symmetries, one can be sure that the resulting model will preserve the same reduced symmetries after101

the quantization [17]. This phase space reduction procedure allows to formulate the corresponding102

theory of lattice cosmology, which is the cosmological limit of the lattice gravity and will remain this103

limit at the quantum level. It is worth noting that this relation does not exist [15] regarding LQG and104

the popular but independent effective cosmological model, called loop quantum cosmology (LQC)105

[6,7,29,30].106

The phase space reduction is a technique in which appropriate gauge-fixing conditions are added
ad hoc to a first-class constraints system. These conditions, by forming a second-class system with
the selected first-class constraints, have to fix the appropriate symmetry completely [31]. Concerning
lattice gravity, the conditions, which lead to the cosmological model, fix the internal symmetry to
the Abelian case and the diffeomorphism invariance to the spatial translations. By defining these
gauge-fixing conditions in the way that they do not Poisson-commute with the spatial and internal
symmetries, one significantly simplifies the system. It becomes describable by variables constant
along the gauge symmetries-related spatial and internal directions. Moreover, by identifying these
directions, the constraints generating gauge symmetries vanish identically. The choice of the gauge
fixing conditions [15] has been inspired by the postulated form of the anisotropic LQC variables [6,30].
Consequently, by deriving the so-normalized Abelian, constant, and diagonal variables

A(lp)→ ci
(
l(i)
)
[h]τi := L0ε(i)〈v〉Ai

p
[
h(p)
]

0ep
(i)τi , hi〈v〉[c]−h−1

i 〈v〉[c] = 2ci
(
l(i)
)
τ(i) ,

E(Fp)→ pi(F(i))[ f ]τi :=
ε(i)〈v〉
L2

0 ε̄ 3〈v〉
Ep

i
[

f (p)
] 0e(i)p√

0q
τi , f

(
Fi〈v〉

)
[p] = f (i)

(
Fi〈v〉

)
[p]τ(i) = pi(F(i))τ(i) ,

(15)

one can expect that the resulting model will describe the cosmological solution [15]. What should be107

emphasized regarding these variables, which solve the gauge-fixing conditions on the lattice, is that108

the right-hand side of the formulas in (15) expresses the discrete quantities. The objects 0ep
i , 0ei

p are the109

diagonal constant unit matrices and the square root of the diagonal constant metric tensor determinant110

is given by the expression
√

0q := εijkεpqr 0ei
p

0ej
q

0ek
r /3! .111



Version February 22, 2021 submitted to Journal Not Specified 6 of 8

It is easy to see that in the resulting Hamiltonian there will be no loop contribution hqr that was112

present in (13). This object was the result of the regularization of the gravitational connection curvature113

Fqr. In the Abelian case, the curvature takes the form FU(1)
qr = ∂q Ar − ∂r Aq and it vanishes in the case of114

the globally spatially constant connection in (15). Moreover, this constancy leads to the vanishing of115

the Lorentzian term in the Hamiltonian (see the discussion below (13)). As a result, only the expression116

in (13) remains, becoming restricted to a cuboidal (rectangularly hexahedral) lattice and the variables117

in (15). See [16] for details.118

For a reader familiar with LQC, it may be worth emphasizing that the algebra of the lattice-reduced
variables in (15) is different than the algebra of the postulated variables of the former effective model. In
the case of LQC, the Poisson brackets of the postulated constant and diagonal variables read {ci, pj} =
− γκ

2 δ
j
i [6,30]. By imposing the reduction on the lattice, the canonical variables are hi〈v〉[c]−h−1

i 〈v〉[c]
and f

(
Fi〈v〉

)
[p]. The corresponding Poisson brackets are

{
ci(l〈v〉)[h], pj(F〈v′〉)[ f ]

}
= tr

({
f
(
F(i)〈v′〉

)
[p], h

(i)〈v〉[c]−h−1
(i) 〈v〉[c]

})
δ

j
i = −γκ c(i)

(
l(i)
)
τ(i)δl〈v〉l〈v′〉δ

j
i . (16)

One can check that they agree with the Abelian, constant, and diagonal limit of the algebra in (12).119

4. Conclusions120

The total Hamiltonian of the cosmologically-reduced lattice gravity [16] consists of a single
constraint

H(Γ) = − 1
γ2κ ∑

Rc〈v〉

N
(
Rc〈v〉

) p̄i(R) p̄j(R)

(| p̄1(R) p̄2(R) p̄3(R)|)1
2

(
c̄i(R) c̄j(R)− c̄j(R) c̄i(R)

)
. (17)

It is the Hamiltonian constraint, which takes the form of a sum over elementary regions that are going
to be called cells. The cell-related variables turn out to be the following sums:

c̄i
(
Rc〈v〉

)
[h] =

1
4 ∑

v∈F(i)〈v〉
tr
(

τ(i)(h−1
i 〈v〉[c]−hi〈v〉[c]

))
, p̄i

(
Rc〈v〉

)
[ f ] =

1
2 ∑

v∈l(i)〈v〉
f (i)
(
Fi〈v〉

)
[p] . (18)

The distribution of the cosmological holonomy oriented toward an i-th direction in a given cell is the121

sum of the reduced holonomies along four links that are the edges of this cuboidal cell, which are122

parallel to the i-th direction. The cosmological flux is simply the reduced flux through the opposite123

faces of a given cuboidal cell.124

It should be emphasized that this result is fundamental, i.e. it has been derived by using125

well-established methods of gauge fixing in QFT. No additional approximations, neither perturbations126

were introduced. Moreover, this result is finite, and contrary to LQC, one does not need to introduce127

any ad hoc cut-off. And yet, regardless of the serious and rigorous reduction, the result still describes128

anisotropies (and trivial inhomogeneities in terms of the lapse function). Furthermore, the anisotropic129

framework is non-trivially constrained by the global cuboidal structure of the lattice. This structure has130

to remain globally cuboidal for each action of the operators after the canonical quantization. However,131

the deviations from the cubic structure can be different for different values of the time.132

The lattice-reduced system allows investigating the evolution of quantum cosmology à la quantum133

mechanics. Moreover, this evolution looks to be expressible in terms of transition amplitudes between134

different cuboidal configurations. Furthermore, by concerning these configurations as different135

deviations from the cubic structure, this system appears to be a description of a fundamental process136

of self-isotropization. Finally, it seems that if the size of the lattice expands during this process, the137

anisotropies will remain frozen within the history at large scales. Does it not look like a postulated138

evolution of the early universe?139
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It should be indicated that the last two comments are not supported with a rigorous calculation.140

They are only the author’s predictions based on the structure of the result in (17) and some early141

heuristic checks. A detailed numerical investigation is needed to verify whether these expectations are142

right and if their details agree with cosmological observations.143

144
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