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Abstract: De Sitter solutions play an important role in cosmology because the knowledge of unstable
de Sitter solutions can be useful to describe inflation, whereas stable de Sitter solutions are often used
in models of late-time acceleration of the Universe. The models the Gauss-Bonnet term are actively
used both as inflationary models and as dark energy models. To modify the Einstein equations one
can add a nonlinear function of the Gauss-Bonnet term or a function of the scalar field multiplied on
the Gauss-Bonnet term. The effective potential method essentially simplifies the search and stability
analysis of de Sitter solutions, because the stable de Sitter solutions correspond to minima of the
effective potential.
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1. Introduction

It is well-known that one can add the Gauss-Bonnet term to the Hilbert-Einstein
Lagrangian of the General Relativity and it does not change the equations of motion. On
the other hand, this term multiplied by some nonconstant function of a scalar field modifies
the equations of motion. Also, models with a non-linear function of the Gauss-Bonnet term
can be rewritten in the equivalent form that includes a scalar field without kinetic term.

The cosmological models with the Gauss-Bonnet term are motivated by the string
theory [1–8] and are actively used for describing of both the early Universe evolution [9–24]
and the current dark energy dominated epoch [5–7,25–30].

Note that these both studies of the Universe evolution are characterized by the quasi
de Sitter accelerated expansion of the Universe. So, it is important to have an effective
method for the searing of de Sitter solutions and the study of their stability. For the Gauss-
Bonnet model with the standard scalar field, such method has been proposed in [31]. It is a
generalization of the effective potential method [32,33]. In this paper, we generalize this
method on model with nonlinear functions of the Gauss-Bonnet term. We also consider the
case of a phantom scalar field and show that in this case the situation is more difficult.

2. Models the Gauss-Bonnet term

Let us consider the model with the Gauss–Bonnet term described by the following
action:

S =
∫

d4x
√
−g
[
UR− c

2
gµν∂µφ∂νφ−V − FG

]
, (1)

where the functions U(φ), V(φ), and F(φ) are double differentiable ones, c is a constant, R
is the Ricci scalar and G is the Gauss–Bonnet term,

G = R2 − 4RµνRµν + RµναβRµναβ.
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Note that the action
S =

∫
d4x
√
−gW(G), (2)

where W(G) is a double differentiable function, can be rewritten in the following form [8,
27]:

S =
∫

d4x
√
−g
[
W ′(φ)(G − φ) + W(φ)

]
, (3)

where a prime denotes the derivatives with respect to φ. Varying action (3) over φ, one
gets φ = G and the initial W(G) model. Therefore, action (1) with c = 0 describes W(G)
models.

In the spatially flat Friedmann–Lemaître–Robertson–Walker metric with

ds2 = − dt2 + a2(t)
(

dx2
1 + dx2

2 + dx2
3

)
, (4)

one gets the following evolution equations:

6H2U + 6HU′φ̇ =
c
2

φ̇2 + V + 24H3F′φ̇, (5)

4
(
U − 4HḞ

)
Ḣ = − cφ̇2 − 2Ü + 2HU̇ + 8H2(F̈− HḞ

)
, (6)

cφ̈ + 3cHφ̇− 6
(

Ḣ + 2H2
)

U′ + V′ + 24H2F′
(

Ḣ + H2
)
= 0, (7)

where H = ȧ/a is the Hubble parameter, dots and primes denote the derivatives with
respect to the cosmic time and the scalar field φ, respectively. At c = 1 these equations
have been investigated in many papers (see, for example [11,31]).

To find de Sitter solutions with a constant φ in the model (2) we substitute φ = φdS
and H = HdS into Eqs. (5) and (7). A de Sitter solution does not depend on the value of c,
so we obtain the same results as in the case c = 1 considered in [31]:

H2
dS =

VdS
6UdS

(8)

and

F′dS =
3UdS(2U′dSVdS −V′dSUdS)

2V2
dS

, (9)

where AdS ≡ A(φdS) for any function A. Therefore, for arbitrary functions U(φ) and V(φ)
with VdSUdS > 0, we can choose F(φ) such that the corresponding point becomes a de Sitter
solution, with the Hubble parameter defined by Eq. (8). We always choose that HdS > 0.

3. Stability of de Sitter solutions

To analyze the stability of a de Sitter solution we transform Eqs. (6)–(7) to the following
dynamical system:

φ̇ =ψ,

ψ̇ =
1

2
(

B̃− 4cF′Hψ
){2H

[
3B + 4F′V′ − 6U′2 − 6cU

]
ψ− 2

V2

U
X

+
[
12H2[(2U′′ + 3c

)
F′ + 2U′F′′

]
− 96F′F′′H4 − 3

(
2U′′ + c

)
U′
]
ψ2
}

,

Ḣ =
1

4
(

B̃− 4cF′Hψ
){8c

(
U′ − 4F′H2

)
Hψ

−2
V2

U2

(
4F′H2 −U′

)
X +

(
8F′′H2 − 2U′′ − c

)
cψ2
}

,

(10)
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where
B̃ = 3

(
4H2F′ −U′

)2
+ cU, (11)

X =
U2

V2

[
24H4F′ − 12H2U′ + V′

]
. (12)

In the case c = 0, the last equation is essentially simplified:

Ḣ =
24H4F′ − 12H2U′ + V′

6(U′ − 4H2F′)
. (13)

At a de Sitter point system (10) is

φ̇ = 0, ψ̇ = 0, Ḣ = 0,

that corresponds to XdS = 0.
In Ref. [31], the effective potential has been proposed for models with the Gauss-

Bonnet term:

Ve f f = −
U2

V
+

2
3

F. (14)

Using Eq. (8), we obtain

XdS =
2
3

F′dS − 2
U′dSUdS

VdS
+

V′dSU2
dS

V2
dS

= V′e f f (φdS) = 0, (15)

therefore, de Sitter solutions correspond to extremum points of the effective potential Ve f f .
To investigate the Lyapunov stability of a de Sitter solution we use the following

expansions:

H(t) = HdS + εH1(t) φ(t) = φdS + εφ1(t), ψ(t) = εψ1(t), (16)

where ε is a small parameter. Therefore,

X = ε(X,H H1 + X,φφ1) +O(ε2), (17)

where

X,H =
∂X
∂H

∣∣∣∣
φ=φdS

=
4
√

6

V5/2
dS

U3/2
dS
(
U′dSVdS −V′dSUdS

)
,

X,φ =
∂X
∂φ

∣∣∣∣
φ=φdS

=
1

V2
dS

(
2
3

F′′dSV2
dS − 2U′′dSUdSVdS + V′′dSU2

dS

)
.

The functions H1(t), φ1(t), and ψ1(t) are connected by Eq. (5):

H1(t) =
V′dSUdS −U′dSVdS

2UdSVdS
(HdSφ1(t)− ψ1(t)). (18)

This expression does not depend on the value of c and coincide with the corresponding
expression obtained in Ref. [31].

Substituting (16), (17), and (18) into Eq. (10) in the first order of ε, we obtain the
following system of two linear differential equations:

φ̇1 = ψ1, (19)

ψ̇1 = −

[
2F′′dSV3

dS − 6U′′dSUdSV2
dS + 3V′′dSU2

dSVdS − 6
(
U′dSVdS −V′dSUdS

)2
]

3UdSVdSBdS
φ1 −

√
6UdSVdS
2UdS

ψ1, (20)
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where
BdS =

3
V2

dS

(
V′dSUdS −U′dSVdS

)2
+ cUdS. (21)

This system can be rewritten in the matrix form:(
φ̇1
ψ̇1

)
=

(
Ã11 Ã21
Ã12 Ã22

)(
φ1
ψ1

)
(22)

where

Ã =
0, 1

−
V2

dSV′′e f f (φdS)

UdSBdS
, −3HdS

The solution of system (22) has the following form

φ1 = c11e−λ−t + c21e−λ+t, (23)

ψ1 = c21e−λ−t + c22e−λ+t, (24)

where cij are some constants. Solving the characteristic equation:

det(Ã− λ · I) = λ2 − 3HdSλ +
V2

dSV′′e f f (φdS)

UdSBdS
= 0, (25)

we get the following roots:

λ± = − 3
2

HdS ±

√
9
4

H2
dS −

V2
dS

UdSBdS
V′′e f f (φdS) . (26)

A de Sitter solution is stable if real parts of both λ− and λ+ are negative. We consider

the case HdS =
√

V
6U > 0, hence, <e(λ−) < 0.

In the case of a positive UdS, we see that BdS > 0 for c > 0 and the condition
<e(λ+) < 0 is equivalent to V′′e f f (φdS) > 0. In the cases c > 0 and c = 0, a de Sitter solution
is stable if V′′e f f (φdS) > 0 and unstable if V′′e f f (φdS) < 0.

In the case c < 0, we see that BdS can be negative. So, in this case de Sitter solution is
stable if the V′′e f f (φdS)BdS > 0. So, the main result of Ref. [31] can be generalized on the case
c = 0 without any correction, whereas the condition should be change to V′′e f f (φdS)BdS > 0
in the case of c < 0 that corresponds to a phantom scalar field φ.

4. Conclusions

In this paper, we consider de Sitter solutions in models with the Gauss-Bonnet term,
including W(G) models. We show that the effective potential proposed [31] for model with
the Gauss-Bonnet term multiplied on a function of the scalar field can be used in W(G)
models as well. To find de Sitter solutions in some W(G) model, we rewrite the action of
this model in the form (3) and construct the corresponding effective potential Ve f f . A stable
de Sitter solutions corresponds V′′e f f (φdS) > 0, where the values of the scalar field at de
Sitter point φdS is determined by the condition V′e f f (φdS) = 0.

Note that the effective potential is useful tools for construction of inflationary scenarios
in the models with the Gauss-Bonnet term multiplied to a function of the scalar field [24].
We plan to generalize this approach to inflationary scenarios in W(G) models.
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