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STRING THEORY MOTIVATED GRAVITY

The Gauss–Bonnet models are motivated by α′ corrections in string
theories. The most general Lagrangian density at the next to leading
order in the parameter α′ reads1:

Lstring = −λ
2
α′ξ(φ)

[
c1G + c2G

µν∂µφ∂νφ+ c3�φφ
;µφ;µ + c4(φ;µφ;µ)2

]
,

where
• G is the Gauss–Bonnet term:

G = R2 − 4RµνR
µν + RµναβR

µναβ ,

• Gµν ≡ Rµν − 1
2g

µνR is the Einstein tensor,
• α′ = λ2s , where λs is the fundamental string length scale;
• ci are constants (we will consider the case ck = 0, k = 2, 3, 4);
• λ is an additional parameter allowing for different species of string
theories, λ = −1/4 for the Bosonic string and λ = −1/8 for Heterotic
string respectively.

1D.J. Gross and J.H. Sloan, Nucl. Phys. B 291 (1987) 41;
R.R. Metsaev and A.A. Tseytlin, Nucl. Phys. B 293 (1987) 385.
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MODELS WITH THE GAUSS–BONNET TERM

There are two basic motivations which lead cosmologists to modify
gravity.

The first one is an attempt to connect gravity with quantum physics, at
least in a perturbative way, by including quantum correction terms to
Einstein’s equations.

The second one is an interest to describe the Universe accelerated
expansion in a natural way, without the dark energy.
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FOUR EPOCHS

Reliable astronomical data support the existence of four distinct epochs
of the Universe global evolution:

an inflation,

a radiation dominated era,

a matter dominated era,

the present dark energy epoch.

Initial inflation and dark energy domination are both characterized by an
accelerated expansion of the Universe with almost constant Hubble
parameter H (quasi de Sitter solution).
The other epochs of the Universe evolution are described by power-law
solutions with H = J/t, where J is a positive constant.
In General Relativity, power-law solutions with H = J/t correspond to
models with a perfect fluid whose EoS parameter reads
wm = −1 + 2/(3J).
The radiation dominated epoch corresponds to solutions with J = 1/2,
whereas the matter dominated one corresponds to J = 2/3.
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INFLATIONARY MODELS
The perturbation theory for such types of models has been developed in
C. Cartier, J. c. Hwang and E. J. Copeland, Evolution of cosmological
perturbations in nonsingular string cosmologies, Phys. Rev. D 64 (2001)
103504 [astro-ph/0106197];
J. c. Hwang and H. Noh, Classical evolution and quantum generation in
generalized gravity theories including string corrections and tachyon:
Unified analysis, Phys. Rev. D 71 (2005) 063536 [gr-qc/0412126]
Inflationary models have been proposed:
Z.K. Guo and D.J. Schwarz, Phys. Rev. D 81, 123520 (2010)
[arXiv:1001.1897]
A. De Felice, S. Tsujikawa, J. Elliston and R. Tavakol, JCAP 08 (2011)
021 [arXiv:1105.4685]
G. Hikmawan, J. Soda, A. Suroso, and F.P. Zen, Phys. Rev. D 93,
068301 (2016) [arXiv:1512.00222]
C. van de Bruck and C. Longden, Phys. Rev. D 93 (2016) 063519
[arXiv:1512.04768]
K. Nozari and N. Rashidi, Phys. Rev. D 95 (2017) 123518
[arXiv:1705.02617]
S.D. Odintsov and V.K. Oikonomou, Phys. Rev. D 98 (2018) 044039
[arXiv:1808.05045]
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DARK ENERGY MODELS

Models the Gauss–Bonnet term successfully generate a dark energy era.
G. Calcagni, S. Tsujikawa and M. Sami, Dark energy and cosmological
solutions in second-order string gravity, Class. Quant. Grav. 22 (2005)
3977 [arXiv:hep-th/0505193]
S. Tsujikawa and M. Sami, String-inspired cosmology: Late time
transition from scaling matter era to dark energy universe caused by a
Gauss-Bonnet coupling, J. Cosmol. Astropart. Phys. 0701 (2007) 006
[arXiv:hep-th/0608178]
S. Nojiri, S.D. Odintsov and M. Sasaki, Gauss-Bonnet dark energy, Phys.
Rev. D 71 (2005) 123509 [arXiv:hep-th/0504052]
S. Capozziello, A.N. Makarenko and S.D. Odintsov, Gauss-Bonnet dark
energy by Lagrange multipliers, Phys. Rev. D 87 (2013) 084037
[arXiv:1302.0093].
M. Benetti, S. Santos da Costa, S. Capozziello, J. S. Alcaniz and M. De
Laurentis, Observational constraints on Gauss–Bonnet cosmology, Int. J.
Mod. Phys. D 27 (2018) 1850084 [arXiv:1803.00895].
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THE EINSTEIN–GAUSS–BONNET GRAVITY

The model with the Gauss–Bonnet term is described by the action:

S =

∫
d4x
√
−g
(
U(φ)R − c

2
gµν∂µφ∂νφ− V (φ)− F (φ)G

)
, (1)

where U, V , and F are differentiable functions and c is a constant.
Let us consider the action

SG =

∫
d4x
√
−gW (G), (2)

where W is a differentiable function. Action SG can be linearized with
respect to the Gauss–Bonnet term, by adding a scalar field in the action2.
Introducing a field φ without kinetic term, we obtain the following action:

SGφ =

∫
d4x
√
−g
[[

dW

dφ
(G − φ) + W (φ)

]]
.

Varying over φ, one gets φ = G and reconstruct SG . So, SG can be
written as action (3) with c = 0.

2G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov and S. Zerbini, Phys. Rev. D 73
(2006) 084007 [arXiv:hep-th/0601008]
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MODELS WITH THE GAUSS–BONNET TERM

S =

∫
d4x
√
−g
(
U(φ)R − c

2
gµν∂µφ∂νφ− V (φ)− F (φ)G

)
. (3)

In the spatially flat FLRW universe with the interval

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
,

one gets the following equations

6H2U + 6HU ′φ̇ =
c

2
φ̇2 + V + 24H3F ′φ̇, (4)

4
(
U − 4HḞ

)
Ḣ = − cφ̇2 − 2Ü + 2HU̇ + 8H2

(
F̈ − HḞ

)
, (5)

cφ̈+ 3cHφ̇− 6
(
Ḣ + 2H2

)
U ′ + V ′ + 24H2F ′

(
Ḣ + H2

)
= 0, (6)

where H = ȧ/a is the Hubble parameter, primes mean the derivatives
with respect to φ, dots mean the derivatives with respect to t.
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DE SITTER SOLUTIONS

Let us find de Sitter solutions in the model with the Gauss–Bonnet term.
It would be convenient, if all the necessary information on the existence
and stability of de Sitter solutions is obtained from a single combination
of functions U, V , and ξ dubbed effective potential Veff .
We restrict ourselves to de Sitter solutions with a constant φ.
Substituting φ = φdS and H = HdS into Eqs. (4) and (6), we get:

The equation for the Hubble parameter at the de Sitter point is the
same as in the corresponding model without the Gauss–Bonnet term:

H2
dS =

VdS

6UdS
. (7)

For arbitrary functions U and V with VU > 0, we can choose F (φ)
such that the corresponding point becomes a de Sitter solution with
the Hubble parameter defined by (7). The value of F ′(φdS ) is

F ′dS =
3UdS (2U ′dSVdS − V ′dSUdS )

2V 2
dS

, (8)

where AdS ≡ A(φdS ) for any function A.
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THE EFFECTIVE POTENTIAL
It would be convenient to obtain position and stability of de Sitter
solutions using only one combination of three functions: U, V , and ξ.
To get this combination (the effective potential) we cast Eqs. (6) and (5)
as a dynamical system:

φ̇ =ψ,

ψ̇ =
1

2
(
B̃ − 4cF ′Hψ

) {2H
[
3B + 4F ′V ′ − 6U ′

2 − 6cU
]
ψ − 2

V 2

U
X

+
[
12H2 [(2U ′′ + 3c)F ′ + 2U ′F ′′]− 96F ′F ′′H4 − 3 (2U ′′ + c)U ′

]
ψ2
}
,

Ḣ =
1

4
(
B̃ − 4cF ′Hψ

) {8c
(
U ′ − 4F ′H2

)
Hψ

− 2
V 2

U2

(
4F ′H2 − U ′

)
X +

(
8F ′′H2 − 2U ′′ − c

)
cψ2

}
,

(9)

where

B̃ = 3
(
4H2F ′ − U ′

)2
+ cU, X =

U2

V 2

[
24H4F ′ − 12H2U ′ + V ′

]
.
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We introduce the effective potential Veff (φ) in the model with the
Gauss–Bonnet term, such that

V ′eff (φdS ) = X (φdS ) = 0. (10)

Indeed, let

Veff = − U2

V
+

1

3
ξ. (11)

we get

X (φdS ) =
1

3
ξ′dS − 2

U ′dSUdS

VdS
+

V ′dSU
2
dS

V 2
dS

= V ′eff (φdS ) = 0. (12)

De Sitter solutions correspond to extremum points of the effective
potential Veff .
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THE LYAPUNOV STABILITY
To investigate the Lyapunov stability of a de Sitter solution we use the
following expansions,

H(t) = HdS + εH1(t), φ(t) = φdS + εφ1(t), ψ(t) = εψ1(t), (13)

where ε is a small parameter.
The functions H1(t), φ1(t) and ψ1(t) are not independent. From
Eq. (4), we obtain

H1 =
V ′dSUdS − U ′dSVdS

2UdSVdS
(HdSφ1 − ψ1) . (14)

Substituting (13) and (14) into (9), we get:

φ̇1 = Ã11φ1 + Ã12ψ1 , (15)

ψ̇1 = Ã21φ1 + Ã22ψ1 , (16)

where

Ã =
0, 1

− V 2
dS V ′′

eff (φdS )
UdS BdS

, −3HdS
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Solving the characteristic equation:

det(Ã− λ · I ) = λ2 − 3HdSλ+
V 2

dSV
′′
eff (φdS )

UdSBdS
= 0, (17)

we get the following roots:

λ± = − 3

2
HdS ±

√
9

4
H2

dS −
V 2

dS

UdSBdS
V ′′eff (φdS ) . (18)

A de Sitter solution is stable if real parts of both λ− and λ+ are negative.

To get this result, we assume that HdS =
√

V
6U > 0, hence, <e(λ−) < 0.

In the case of a positive UdS , we see that BdS > 0 for c > 0. The
condition <e(λ+) < 0 is equivalent to V ′′eff (φdS ) > 0.
In the cases c > 0 and c = 0, a de Sitter solution is stable if
V ′′eff (φdS ) > 0 and unstable if V ′′eff (φdS ) < 0.
In the case c < 0, we see that BdS can be negative. So, in this case de
Sitter solution is stable if the V ′′eff (φdS )BdS > 0.
Let us consider a few examples of models with c = 1.
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MODEL WITH AN EXPONENTIAL POTENTIAL

Let us consider the string theory inspired cosmological model with 3

U = U0, V = c̃e−λφ, F =
α

µ
eµφ, (19)

where U0, α, c̃ , λ, and µ are positive constants.
In this model, the effective potential is

Veff = − U2
0

c̃
eλφ +

2α

3µ
eµφ. (20)

The condition V ′eff (φdS ) = 0 gives

φdS =
1

λ− µ
ln

(
αc̃

3U2
0λ

)
. (21)

3S. Tsujikawa and M. Sami, String-inspired cosmology: Late time transition from
scaling matter era to dark energy universe caused by a Gauss–Bonnet coupling, J.
Cosmol. Astropart. Phys. 0701 (2007) 006 [arXiv:hep-th/0608178]
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There exists a de Sitter solution for all µ 6= λ. It is easy to see that
V ′′eff = 0 at

φ2 =
1

λ− µ
ln

(
2αc̃µ

3U2
0λ

2

)
= φdS −

ln(λ)− ln(µ)

λ− µ
, (22)

and φdS > φ2 for any λ 6= µ.
• If µ > λ, then V ′′eff is positive at large φ, so the second derivative is
positive at the de Sitter point and this point is stable.
• In the opposite case, µ < λ, V ′′eff < 0 at large φ and the de Sitter
solution is unstable.
This result of the paper
E.O. Pozdeeva, M. Sami, A.V. Toporensky, S.Yu. Vernov,
Phys. Rev. D 100 (2019) 083527 [arXiv:1905.05085]
coincides with the result obtained in
S. Tsujikawa and M. Sami, J. Cosmol. Astropart. Phys. 0701 (2007)
006 [arXiv:hep-th/0608178]
by an another method.
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GENERALIZATION OF THE PREVIOUS MODEL

• We generalize this result assuming that the constants can be negative:

Veff = c1e
−N1φ + c2e

−N2φ, (23)

• The same effective potential corresponds to different choice of
functions F , V , and U.
• If two of these functions are given, then we can get the third function
using the given form of the effective potential.
• It is a way of constructing models with de Sitter solutions.
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For example, the model (Veff = c1e
−N1φ + c2e

−N2φ) with a non-minimally
coupled scalar field defined by functions

U = U0

(
ξφ2 + 1

)
eη1 φ, and V = V0φ

4eη2φ,

has the effective potential given by (23) if

F =
3

2

[
4U2

0e
2 η1φ−η2φ

V0

(
ξ +

1

φ2

)2

+ c1e
−N1φ + c2e

−N2φ

]

In this model, ci and Ni are arbitrary constants. The analysis of the
second derivative of Veff gives the following stability conditions:

if c1 > 0 and c2 > 0, then the de Sitter solution is stable;

if c1 < 0 and c2 < 0, then the de Sitter solution is unstable;

if c1 > 0 and c2 < 0, then the de Sitter solution is stable at
|N1| > |N2| and unstable at |N1| < |N2|;
if c1 < 0 and c2 > 0, then the de Sitter solution is stable at
|N1| < |N2| and unstable at |N1| > |N2|.

• The effective potential can be used not only to simplify the analysis of
the stability of de Sitter solutions in a given model, but also to construct
a new model with de Sitter solutions.
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MODELS WITH V = CU2

• Let us consider the case V = CU2, where C is a positive constant.
• In this case, a model without the Gauss–Bonnet term transforms to a
model with a constant potential in the Einstein frame.
• If the Gauss–Bonnet term is presented, then the function ξ(φ) plays a
role of the effective potential, fully determining the position and stability
of the de Sitter solutions, because

Veff =
2

3
F − 1

C
. (24)

• So, values of φdS satisfy the condition F ′(φdS ) = 0. From Eq. (18), it
follows

λ± = −
√

6CUdS

4
±

√
6CUdS [9(3U ′dS

2 + UdS )− 16CU2
dSF

′′
dS ]

12
√

3U ′dS
2 + UdS

. (25)

• For UdS > 0, a de Sitter solution is unstable at F ′′dS < 0 and stable at
F ′′dS > 0.
Note that the only difference between minimal and non-minimal coupling
cases is that values of the Hubble parameter at de Sitter points
H2

dS = C
6 U(φdS ), can be different if U is not a constant.
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CONCLUSIONS
• We analyze the Einstein–Gauss–Bonnet gravity model:

S =

∫
d4x
√
−g
(
U(φ)R − c

2
gµν∂µφ∂νφ− V (φ)− F (φ)G

)
,

• We have shown that, in the case of U(φ) > 0, it is possible to
introduce the effective potential Veff which can be expressed through the
coupling function U, the scalar field potential V and the coupling
function with the Gauss–Bonnet term F :

Veff =
2

3
F − U2

V
.

• For c > 0, it is convenient to investigate the structure of fixed points
using the effective potential, indeed, the stable de Sitter solutions
correspond to minima of the effective potential Veff .
• The effective potential Veff can be used to analyze the stability of de
Sitter solutions in model with W (G) term that correspond to the case of
c = 0.

Thank for your attention
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