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Abstract: Scalar-tensor theories of gravity provide an intriguing and compelling approach to the1

dark energy problem. They have received increased attention in recent years thanks to a wealth2

of developments both in the theoretical and experimental sides. The class of models known as3

"degenerate" provide a particularly interesting proposal. These theories extend general relativity by a4

single degree of freedom, despite their equations of motion being higher than second order, a virtue5

made possible by the existence of an additional constraint that removes the would-be instability6

associated to a ghost. This note presents a brief overview of the problem of matter coupling in7

degenerate scalar-tensor theories. It has been remarked that the presence of matter fields minimally8

coupled to the metric tensor can obstruct the degeneracy constraint, thus impairing the consistency of9

the theory. We explain through some illustrative examples the precise ways in which the extra degree10

of freedom may reappear. This occurs in the Hamiltonian language through a loss of constraints,11

which may happen either when the kinetic matrix is not block-diagonal in the presence of matter12

fields, or when the matter sector itself has constraints. We next turn to the more physically relevant13

case of fermionic matter, and show that spin-1/2 fermions evade these issues and can thus be14

consistently coupled to degenerate theories of scalar-tensor gravity.15
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1. Introduction17

The extension of general relativity (GR) by additional light degrees of freedom is arguably the18

most natural way to provide a dynamical explanation of Dark Energy, thereby dispensing of the19

cosmological constant as the source of the observed late-time cosmic acceleration. Considering a20

single scalar field in addition to the metric tensor is, in this regard, particularly well motivated. These21

so-called scalar-tensor theories of gravity thus provide the most minimal modification of Einstein22

gravity in terms of local degrees of freedom and under some standard assumptions such as Poincaré23

invariance and locality. This is a virtue both from the theoretical and experimental perspectives, as its24

relative simplicity allows for strong analytical control while maintaining much of the phenomenology25

of GR. It is also not the least telling case for scalar-tensor theories that a related mechanism was likely26

to be at work during the pre-Big Bang epoch.27

The complete classification of scalar-tensor theories thus seems to be an interesting and timely28

theoretical problem. In this effort, the assumption of having precisely three local degrees of freedom29

— two propagated by the metric and one by the scalar field — severely restricts the space of possible30

models. Although the physically meaningful question should make a distinction of light versus heavy31

degrees of freedom, it has nevertheless proved fruitful to demand the strict absence of additional fields32
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beyond the aforementioned three, seeing that the resulting models often enjoy interesting properties33

that may have been difficult to discover through a more agnostic construction based on the rules of34

effective field theory.35

This restriction on the number of degrees of freedom makes the classification problem36

mathematically well defined, although not easy as it turns out. Given the symmetries of the theory,37

it is sufficient to demand second order field equations, and taking this as a premise the problem has38

indeed been fully solved. The solution is given by Horndeski’s scalar-tensor theory [1]. The remarkable39

observation is that this premise is however not a necessary one. That is, higher order equations of40

motion are not necessarily associated to extra unwanted degrees of freedom — unwanted indeed as41

they are generically associated to ghost-type instabilities according to the Ostrogradski theorem. This42

is so because the equations may happen to be degenerate, in the sense that a subset of them follows as43

a consequence of the others, implying in particular a reduction of the number of pieces of initial data44

that one would have naively inferred. The development and classification of these so-called degenerate45

scalar-tensor theories has been active research program in the past decade [2–6]. New models have46

been discovered throughout the years and have been given different names. We will refer to all of47

them collectively as DHOST, an acronym that stands for "Degenerate Higher-Order Scalar-Tensor"48

theories.49

DHOST theories provide then a very interesting solution to the classification problem of50

scalar-tensor gravity. They are consistent theories within the scope of that problem, at least according51

to the way we have formulated it, although it is clear that physical consistency will reduce the space52

of allowed models by the imposition of further constraints. Most of these constraints arise from53

experimental tests of gravity, although here we will not be concerned with them — not because they54

are not important, but because their importance is crucially contingent on the physical context. For55

instance constraints derived from cosmological experiments need not apply on the scales of compact56

astrophysical objects. Theoretical constraints on the other hand have the chance to be more generally57

applicable, even if experiments must have the last word.58

One such theoretical constraint that has remained largely overlooked is the question on the59

consistency of matter coupling in DHOST theories. The fact that matter fields can be problematic is60

seen easily in the Hamiltonian language, in which the degeneracy of the field equations is manifested61

in the form of a constraint on the phase space variables. The mixing with matter fields can then obstruct62

this constraint, leading to the reappearance of the ghost degree of freedom and an inconsistent theory.63

This may occur even if matter is minimally coupled to the metric tensor, for an indirect coupling64

with the DHOST scalar is still present. It is worth remarking that this issue is of course not specific65

to DHOST theories and may happen whenever two theories, where either or both have constraints66

when considered separately, are coupled in some way. It is thus a virtue of the Hamiltonian language67

to make it manifest that the degeneracy condition is in true a constraint, on equal footing to other68

constraints.69

Understanding the precise ways in which the DHOST constraint may be lost was the subject of our70

work [7]. An additional result, and the most physically relevant in our view, is that spin-1/2 fermions71

can be coupled consistently with DHOST gravity, thus lending further support to the robustness of the72

theory. In the remaining of this note we present a summary of the main results, referring the interested73

reader to [7] for details and relevant literature.74

2. Pathological matter fields in DHOST theory75

As explained in the introduction, the potential pathologies associated to matter fields are
manifested in a loss of constraints in the context of the Hamiltonian formalism. The first step is
then to perform a 3+1 decomposition of the DHOST Lagrangian in terms of ADM variables [8]. We
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focus our attention to the subset of DHOST theories that are at most quadratic in the second derivative
of the scalar field,

Sg[g, φ] =
∫

d4x
√
−g
[

F(φ, X)R + P(φ, X) + Q(φ, X)�φ + Cµνρσ[φ]∇µ∇νφ∇ρ∇σφ
]

. (1)

Here X := ∇µφ∇µφ, R is the 4-dimensional curvature scalar, and

Cµνρσ := A1gµ(ρgσ)ν + A2gµνgρσ +
A3

2
(φµφνgρσ + φρφσgµν)

+
A4

2

(
φµφ(ρgσ)ν + φνφ(ρgσ)µ

)
+ A5φµφνφρφσ ,

(2)

where φµ := ∇µφ and the A’s are functions of φ and X. It is then a straightforward calculation to
derive the action in 3+1 form. The result is

Sg =
∫

dtd3x
{

N
√

γ
[
AV2
∗ + 2BijV∗Kij +Kij,klKijKkl + 2C ijKij + 2C0V∗ −U

]
+ λ0

(
NA∗ + Ni Ai − φ̇

)
+ λi (Ai − Diφ)

}
,

(3)

where N and Ni are the lapse and shift ADM variables, Kij is the extrinsic curvature, and Di is the
covariant derivative compatible with the 3-metric γij. The auxiliary vector field Aµ is constrained to
be equal to ∇µφ by the Lagrange multiplier λµ, and is necessary to produce a Lagrangian with only
first time derivatives from which the canonical momenta can be defined unambiguously. The above
3+1 action also includes the definitions

A∗ := nµ Aµ =
1
N
(A0 − Ni Ai) , V∗ :=

1
N

(
Ȧ∗ − AiDi N − NiDi A∗

)
, (4)

needed to eliminate non-linear terms in the lapse and shift from the Hamiltonian []. Finally the tensors
A, Bij, Kij,kl , C ij, C0 and U are constructed from the functions defining the theory in (1), and depend
only on the variables φ, A∗, Ai and γij, but not their time derivatives or the lapse and shift. Explicit
expressions are given in [7]. It suffices here to note that a DHOST theory of the class we are discussing
is characterized by the identity

A−K−1
ij,klB

ijBkl = 0 . (5)

This is the condition that ensures the degeneracy of the field equations, or equivalently the presence of
an additional constraint in the Hamiltonian formalism, within pure DHOST gravity. The explicit form
of the DHOST constraint in the absence of matter is given by

Ψ := p∗ − 2K−1
ij,klπ

ijBkl + 2
√

γ
(
K−1

ij,klC
ijBkl − C0

)
≈ 0 , (6)

where p∗ and πij are the canonical momenta conjugate to A∗ and γij, respectively.76

We are now in position to understand more precisely the ways in which the degeneracy of DHOST77

gravity may be lost in the presence of matter fields. We can classify the pathological matter theories78

into two types:79

(I) The constraint Ψ is lost, and no analogue of it exists.80

This will be the case when the rank of the Hessian matrix

HI J :=
∂2L

∂ψ̇I∂ψ̇J , (7)

(here ψI stands for all the fields) is greater than the sum of the ranks of the DHOST and matter81

Hessians that one would have in the absence of coupling. This cannot occur when the full Hessian82
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is block-diagonal in the DHOST and matter variables. As we are restricting our attention to83

minimal matter coupling, any matter Lagrangian that does not involve the Christoffel connection84

will lead to a block-diagonal Hessian and thus be safe according to this criterion. The converse85

of this is of course not true. Although a non-block-diagonal Hessian is at risk of failing this86

consistency check, it may still enjoy a (possibly modified) degeneracy constraint.87

(II) The constraint Ψ (or some analogue of it) does exist, but it fails to Poisson-commute with one or88

more constraints present in the matter sector.89

In the absence of matter the DHOST constraint Ψ is a primary, second-class constraint, and it90

Poisson-commutes with all the other primary constraints in the gravity sector. It therefore leads91

to a secondary constraint, which together with Ψ is responsible for removing the would-be ghost92

degree of freedom. If now the matter sector itself has some constraints, there is the risk that93

they may not commute with Ψ, implying the loss of the associated secondary constraint and the94

reappearance of the unwanted degree of freedom.95

It is not difficult to find examples that fail either of these two criteria. A matter field that fails
criterion (I) is provided by a vector with a non-Maxwell kinetic structure,

Sm =
∫

d4x
√
−g∇µBν∇µBν . (8)

This action involves the Christoffel connection and hence the time derivative of the 3-metric in the96

ADM language. The full Hessian matrix is therefore not block-diagonal and it is not hard to show, for97

instance through an explicit computation of the rank, that the DHOST constraint is lost [7]. Although98

this matter theory is pathological in itself, already without gravity, it is consistent as far as the above99

criteria are concerned in the context of pure GR. Thus its failure to satisfy the criteria within DHOST100

shows that an extra ghost must be present, irrespective of whether the matter degrees of freedom are101

themselves healthy or not.102

An example of a matter theory that fails criterion (II) is given by a cubic galileon (as noted first in
[9])

Sm =
∫

d4x
√
−g
[
− 1

2
(∇π)2 + κ(∇π)2�π

]
, (9)

where κ is a coupling constant. When minimally coupled to DHOST one finds that the full Hessian103

matrix is not block-diagonal, yet a modified degeneracy constraint still exists. Now however the104

matter action has itself a constraint (associated to a degeneracy of the 3+1 formulation of the galileon105

Lagrangian) which fails to Poisson-commute with the DHOST constraint [7]. The coupled theory106

thus propagates more degrees of freedom than the uncoupled gravity and matter sectors and it must107

therefore be deemed pathological.108

3. Spinor fields in DHOST theory109

The coupling of spinor fields to theories of modified gravity is a question of obvious theoretical110

importance. Our findings show that inspecting this issue in the context of DHOST gravity is all the111

more relevant in view of the possibility that the above criteria for consistent coupling might a priori be112

violated by spinor fields. Indeed fermionic Lagrangians are in some sense doubly dangerous as they113

couple to the spin connection, leading therefore to a non-block-diagonal kinetic Hessian, and are also114

subject to constraints of their own. Thus they risk violating both criteria (I) and (II).115

The positive result derived in our work [7] is that spinor fields are in fact consistent, at least for a
fairly broad class of models. We summarize our analysis for the case of a linear Majorana spin-1/2
fermion, although our results apply more generally as we comment on the final section. We consider
then the Majorana action minimally coupled to gravity,

Sm = −1
2

∫
d4x
√
−g e µ

a λα(γa)
β

α ∇µλβ , (10)
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where e µ
a is the (inverse) tetrad field, while the covariant derivative of λα (we use 4-component

notation for spinors),

∇µλα = ∂µλα +
1
4

ωab
µ(γab)

β
α λβ , (11)

depends on the spin connection ωab
µ as announced. As we work in the second-order formalism, we116

have ωa
bµ = e ν

b (Γρ
µνea

ρ − ∂µea
ν) and hence a mixture of time derivatives of the spinor and tetrad117

variables.118

In spite of the mixing of velocities, it turns out that the DHOST constraint is unaffected. This
result is non-trivial given that the tetrad canonical momentum,

π i
a = 2

√
γ eaj

[
Kij,klKkl + BijV∗ + C ij

]
+

1
8
√

γ λα(γaEiE0)
β

α λβ , (12)

is explicitly modified by the terms containing the spinor variables. However it remains true that the
combination

πij :=
1
2

ea(iπ
j)

a =
√

γ
[
Kij,klKkl + BijV∗ + C ij

]
, (13)

is independent of the spinor field, and it is precisely this expression, rather than π i
a itself, which119

defines the DHOST constraint. We have further found that this is not an accident of the linearity of the120

matter theory but actually holds for any Majorana spin-1/2 action that is linear in∇µλα but completely121

general in non-derivative self-interactions.122

The final check is that the DHOST constraint still Poisson-commutes with all other primary123

constraints and so generates the necessary secondary constraint. The fact that the Majorana Lagrangian124

is linear in ∇µλα means that the spinor canonical momentum is subject to a constraint. It is then easy125

to verify that this constraint indeed commutes with the constraint Ψ of the gravity sector and so the126

second criterion is also satisfied.127

4. Final remarks128

Most phenomenological applications of DHOST gravity have only dealt with standard matter129

fields for which the pathologies we have uncovered do not apply. Spin-0 matter particles described (in130

flat space) by Lagrangians of the form L = P(X, π), with X = − 1
2 (∂π)2, are immediately safe since131

minimal coupling to gravity does not introduce mixings with the connection and hence maintains132

the block-diagonal structure of the Hessian matrix. Note that perfect fluids are contained within this133

class. The same conclusion applies to standard spin-1 theories, i.e. Maxwell, Proca and (massive)134

Yang–Mills theories. Yet we see no convincing reason why matter fields in the context of DHOST135

should be restricted to these simple cases, at least as a matter of principle. More generally, we expect136

our results to be important for any model of modified gravity characterized by a degeneracy condition.137

Our findings concerning spinor fields are positive and encouraging, but not fully conclusive. We138

focused on a matter sector containing a single Majorana spin-1/2 field. If one restricts the attention139

to linear theories (i.e. theories that are free in the absence of gravity) then all our conclusions remain140

unchanged. In particular a linear Dirac spinor, being essentially the sum of two Majorana fields, is141

consistent according to our criterion. Mutually interacting spinor fields are however not covered by142

our results and it would be interesting to address this type of models. It would also be intriguing to143

see if a spin-3/2 field can be coupled consistently to DHOST gravity as this may be of relevance to the144

problem of supersymmetrizing generalized scalar-tensor theories.145
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