

A cautionary note on amphibole geobarometry

José F. Molina¹, Aitor Cambeses¹, Juan A. Moreno², Irene Morales¹, Concepción Lázaro¹, Pilar Montero¹, Fernando Bea¹

1: Department of Mineralogy and Petrology, University of Granada, Spain

2: CICTERRA, CONICET, Universidad Nacional de Córdoba, Argentina

Introduction

The classical Al-in-hornblende geobarometer has been very successful in determining emplacement depths of metaluminous cordilleran granitoid plutons that bear the buffering assemblage at near solidus conditions: hornblende-biotite-plagioclase-orthoclase-quartz-sphenetwo Fe-Ti-oxides (or one Fe-Ti oxide + epidote)-melt-vapor (e.g., [1-3]).

Ridolfi et al. [4] and Ridolfi and Renzulli [5] derived empirical amphibole-only barometric expressions that could be potentially applied to a larger number of phenocrystic assemblages from volcanic rocks. However, Erdmann et al. [6] claimed that these geobarometers are inaccurate and can give untenable estimates.

A graphical geobarometer based on the partitioning of Al and Si between amphibole and plagioclase was derived by Fershtater [7] using amphibole-plagioclase compositional pairs of rocks from the Urals. More recently, Molina et al. [8] calibrated an empirical expression based on experimental data that can be applied to igneous and high-grade metamorphic rocks.

In order to compare the reliability of amphibole-only and amphibole-plagioclase barometry, in this work, we test the performance of the expressions of Ridolfi and Renzulli [5] and Molina et al. [8], using an experimental data set compiled from the literature that has been recently published by Molina et al. [9].

Precision and accuracy of the amphibole-only geobarometers

Experimental data set

The experimental data set compiled from the literature by Molina et al. [9] contains 154 data that fulfill the requirements of use of the amphibole-only barometric expressions by Ridolfi and Renzulli [5]: atomic Mg-number, Mg/(Mg+Fe²⁺) in amphibole greater than 0.5.

Temperature ranges from 650 to 1050°C and pressure from ca. 0.5 to 15 kbar (Fig. 1).

Test of the expressions

The test carried out on the amphibole-only geobarometers from [5] reveals a poor performance, tending expressions 1A, 1B and 1C to underestimate pressures at P > 5 kbar (**Fig. 2**), whereas the expressions 1D and 1E tend to overestimate pressures (**Fig. 3**).

Test of the Al/Si amphibole-plagioclase geobarometer

Experimental data set

We tested the amphibole-plagioclase geobarometer from Molina et al. [8] using the experimental data set by Molina et al. [9]. We noted a better performance for Qz-Amp-Pl and Ol-free Cpx-Amp-Pl assemblages with the amphibole compositional limits (23O; normalisation to 13-CNK): total Al > 1, Ti: 0.05-0.27 and Fe³⁺<1.07.

The number of amphibole-plagioclase compositional pairs in the selected data subset are 30 for Qz-Amp-Pl assemblages and 22 for Ol-free Cpx-Amp-Pl assemblages, with a total of 47 observations.

For the Qz-Amp-Pl assemblages, temperature ranges from 650 to 880°C and pressure from ca. 2.5 to 13 kbar (**Fig. 4**), whereas for the Ol-free Cpx-Amp-Pl assemblages they ranges from 700 to 980°C and from ca. 0.5 to 15 kbar.

Test of the expression

The test performed on the amphibole-plagioclase geobarometer for the for the Qz-Amp-Pl and Ol-free Cpx-Amp-Pl assemblages work well with a relations of calculated versus experimental pressures very close to the one-to-one line (**Fig. 5; Tables 1-3**).

The precision as estimated by the Root MSE parameter (see discussion in Molina et al. [8] and [9]) is close to ± 1.7 kbar for the Qz-Amp-Pl assemblages and to ± 1.4 kbar for the Ol-free Cpx-Amp-Pl assemblages (**Tables 1 and 2**); the expression yields an overall precision of ± 1.6 kbar for the full data set (**Table 3**).

Conclusions

In accordance with Erdmann et al.[6], the test reveals unsustainable pressure estimates with the amphibole-only barometric expressions from Ridolfi and Renzulli [5]. Therefore we recommend to don't use the amphibole-only barometric expressions, calibrated for volcanic rocks, because of their very poor performance.

By contrast, the amphibole-plagioclase geobarometer from Molina et al. [8] works well for Qz-Amp-Pl and Ol-free-Cpx-Amp-Pl assemblages and yields a precision better than \pm 1.7 kbar. The good performance of the amphibole-plagioclase geobarometer when applied to these mineral assemblages suggests that the partitioning of Al and Si between amphibole and plagioclase buffered by reactions involving Qz+Amp+Pl and Cpx+Amp+Pl. However, it is important to emphasize that the expression should be used for amphibole having > 1 apfu total Al, 0.05-0.27 apfu Ti: and < 1.07 apfu Fe³⁺ to to ensure more reliable pressure estimates.

References

1. Hammarstrom, J.M., and Zen, E., 1986. Aluminum in hornblende, an empirical igneous geobarometer. American Mineralogist. American Mineralogist 71, 1297–1313.

2 Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110, 304–310.

3. Anderson, J.L, and Smith, D.R., 1995. The effects of temperature and fO2 on the Al-inhornblende barometer. American Mineralogist 80, 549-449.

4. Ridolfi, F., Renzulli, A., and Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology 160, 45–66.

5. Ridolfi, F., Renzulli, A., 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contributions to Mineralogy and Petrology 163, 877–895.

6. Erdmann, S., Martel, C., Pichavant, M., and Kushnir, A., 2014. Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology 167, 1016

7. Fershtater, G.B., 1990. Empirical hornblende-plagioclase geobarometer. Geokhimiya 3, 328–335.

8. Molina, J.F., Moreno, J.A., Castro, A., Rodruiguez, C., and Fershtater, G.B., 2015. Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole-liquid Mg partitioning. Lithos 232 286–305.

9. Molina, J.F., Cambeses, A., Moreno, J.A., Morales, I., Montero, P., and Bea, F., 2020. A reassessment of the amphibole-plagioclase NaSi–CaAl exchange thermometer with applications to igneous and high-grade metamorphic rocks. American Mineralogist, in press, <u>https://doi.org/10.2138/am-2020-7400</u>

FIGURES

Figure 1. Experimental runs with amphibole having $Mg/(Mg+Fe^{2+}) > 0.5$. Data compiled from the literature by Molina et al. [9].

Figure 2. Calculated versus experimental pressures. Pressures estimated with the amphibole-only expressions 1A, 1B and 1C by Ridolfi and Renzulli [5]. Data compiled from the literature by Molina et al. [9].

Figure 3. Calculated versus experimental pressures . Pressures estimated with the amphibole-only expressions 1D and 1E by Ridolfi and Renzulli [5]. Data compiled from the literature by Molina et al. [9].

Figure 4. Experimental runs with amphibole having (apfu, 23O): total Al > 1, Ti: 0.05-0.27 and Fe³⁺<1.07. Data compiled from the literature by Molina et al. [9].

Figure 5. Calculated versus experimental pressures . Pressures estimated with the amphibole-plagioclase barometric expression B by Molina et al. [8]. Data compiled from the literature by Molina et al. [9].

TABLES

Table 1

Source	SS	df	MS	Number	of ob	s =	30
Model Residual	2340.55665 88.5610976	1 29	2340.5566 3.0538309	– F(1, 29 5 Prob > 5 R-squa	F(1, 29) Prob > F R-squared		766.43 0.0000 0.9635
Total	2429.11774	30	80.970591	— Adjr— 5 Root M:	square SE	a = =	0.9623
pkbB_tc	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
pkbar	1.057755	.0382074	27.68	0.000	.9796	117	1.135898

Table 2

Source	SS	df	MS	Number o	fobs =	22
Model Residual	1234.73641 41.2073201	1 21	1234.7364 1.96225334	- F(1, 21) L Prob > F L R-square	= = d =	629.24 0.0000 0.9677
Total	1275.94373	22	57.9974422	– Adj R-sq 2 Root MSE	uared =	0.9662 1.4008
pkbB_tc	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
pkbar	.9417183	.0375415	25.08	0.000 .	8636465	1.01979

Table 3

Source	SS	df	MS	Numb	er of ob	s =	47
Model Residual	3326.0934 115.031462	1 46	3326.0934 2.50068395	F(1, Prob R-sq	F(1, 46) Prob > F R-squared		1330.07 0.0000 0.9666
Total	3441.12486	47	73.2154226	Adj Root	R−square MSE	d = =	0.9658 1.5814
pkbB_tc	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
pkbar	1.038719	.0284813	36.47	0.000	.9813	893	1.096049