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Abstract: The standard ΛCDM model is reasonably successful in describing the universe, and is1

the most widely acceptable model in cosmology. However, there are several theoretical issues, such2

as the initial singularity, the cosmological constant problem, the particle nature of dark matter, the3

existence of anomalies in the cosmic microwave background radiation and on small scales, the4

predictions and tests of the inflationary scenario, and whether general relativity is valid on the largest5

possible scales. Hence there is growing interest in looking at modified theories. In this presentation,6

a reconstruction is made of the Friedmann-Lemaitre-Robertson-Walker models with a dynamic7

cosmological parameter in f(R,T) modified gravity. This theory has a number of pleasing features,8

such as the avoidance of the initial big-bang singularity and a variable cosmological parameter. A9

dynamic cosmological parameter, which arises naturally in this theory, can solve the cosmological10

constant problem, and is also a candidate for dark energy. In addition, a variable cosmological11

parameter fits observations better than the standard ΛCDM model. The model exhibits a transition12

from deceleration to acceleration. The time evolution of the physical parameters such as energy13

density, pressure and equation of state are analyzed.14
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1. Introduction16

The most widely accepted theory to study the evolution of the universe is undoubtedly Einstein’s17

general theory of relativity, which predicts that the universe was condensed into a very small, hot and18

dense state initially, and then expanded. In recent times, observations of type Ia supernova indicate19

that the current rate of expansion of the universe is accelerating. After this, many observations have20

supported the idea of an accelerated expansion [1–4]. In order to explain this acceleration, a new form21

of energy has been postulated that has a repulsive effect called dark energy (DE) [5–7]. According to22

the Planck mission team’s best estimate [6], the universe is made up of three forms of matter/energy,23

viz., 68.5% DE, 26.6% dark matter (DM) and only 4.9% baryonic matter.24

The most favoured explanation for DE is Einstein’s cosmological constant which25

is obtained by adding a cosmological constant to the equations of Einstein’s standard26

Friedmann-Lemaitre-Robertson-Walker (FLRW) equations, and leads to the ΛCDM model [6]. This27
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has a solution that includes accelerated expansion. Despite the fine tuning and coincidence problems28

in the ΛCDM model, it is widely accepted as the best solution to the DE problem [8]. While this DE is29

constant, another consideration is a changing field, in which the equation of state (EOS) varies, viz.,30

quintessence, phantom DE and scalar field models. For excellent reviews of DE, we refer to [8,9].31

In another direction, the reason for the acceleration of the universe can be sought in modified32

theories of gravitation. One of these is f (R, T) gravity [10], where R is the Ricci scalar and T is the33

trace of the energy momentum tensor. This theory allows for an explanation of accelerated expansion34

without DE, and for an avoidance of the initial singularity. A very interesting feature of the theory is35

that, in some sense, is may be thought of as general relativity with a modified matter part, thus allowing36

for a dynamic cosmological parameter [11]. This allows for the possibility of solving the cosmological37

constant problem. In this paper, we reconstruct the Friedman-Lemaitre-Robertson-Walker (FLRW)38

model in f (R, T) theory, focussing on a variable cosmological parameter. This correspondence has not39

been fully studied. We find a model that exhibits a transition from deceleration in the past, to current40

acceleration. The behaviour of the physcial parameters is analysed, as are the energy conditions. The41

cosmological parameter varies from being large at early times, and decreases to a small value today.42

The introduction should briefly place the study in a broad context and highlight why it is43

important. It should define the purpose of the work and its significance. The current state of the44

research field should be reviewed carefully and key publications cited. Please highlight controversial45

and diverging hypotheses when necessary. Finally, briefly mention the main aim of the work and46

highlight the principal conclusions. As far as possible, please keep the introduction comprehensible to47

scientists outside your particular field of research.48

2. Basic Equations49

In f (R, T) gravity, the action is:

S =
∫ ( 1

16πG
f (R, T) + Sm

)√
−gdx4. (1)

We choose [10]
f (R, T) = f1(R) + f2(T), (2)

i.e., a sum of two independent functions of R and T, respectively. With this condition, equation (1) can
be written as

f ′1(R)Rij −
1
2
( f1(R) + f2(T))gij + (gij�−∇i∇j) f ′1(R) = 8πTij − f ′2(T)Tij − f ′2(T)Θij, (3)

where � ≡ ∇i∇j is the D’Alembertian operator. The tensor Θij is defined as

Θij = glm δTlm

δgij . (4)

A prime denotes a derivative with respect to its argument.50

In particular [12], we assume the forms

f1(R) = λ1R, f2(T) = λ2T (5)

where λ1 and λ2 are arbitrary coupling constants of f (R, T) gravity. We take the matter content in the
universe to be a perfect fluid with energy momentum tensor:

Tij = (ρ + p)uiuj − pgij, (6)
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where ρ and p are energy density and pressure of the fluid, respectively, and ui is four velocity vector
satisfying the condition uiui = 1. Then equation (4) yields:

Θij = −2Tij − pgij, (7)

Using equations (4)-(7), equation (3) becomes:

Rij −
1
2

Rgij =

(
8π + λ2

λ1

)
Tij +

λ2

λ1
(p +

1
2

T)gij. (8)

Note that this equation reduces to the general relativistic limit when we put λ1 = 1, λ2 = 0.51

Now, in the general theory of relativity, the Einstein field equations with cosmological constant
are (in units G = c = 1):

Rij −
1
2

Rgij = 8πTij + Λgij, (9)

We notice a similarity between equations (8) and (9). Hence, we may set:

Λ ≡ Λ(T) =
λ2

λ1
(p +

1
2

T), (10)

which leads naturally to a varying cosmological parameter Λ as a function of T. Evaluating the trace T
from equation (6), we obtain:

Λ =
λ2

2λ1
(ρ− p). (11)

We consider the flat FLRW metric:

ds2 = dt2 − Σ3
i=1a2(t)(dx2

i ), (12)

where a(t) is the scale factor. The Hubble and deceleration parameters are defined by, respectively,:

H =
ȧ
a

, q = − äa
ȧ2 (13)

With the metric (12), the field equations (8) become, with the aid of equation (10):

3H2 =

[(
8π + λ2

λ1

)
+

λ2

2λ1

]
ρ− λ2

2λ1
p, (14)

2Ḣ + 3H2 = −
[(

8π + λ2

λ1

)
+

λ2

2λ1

]
p +

λ2

2λ1
ρ, (15)

We obtain the energy density and pressure from the above two equations as

ρ =
λ1

(8π + 2λ2)

[
3 +

λ2

(8π + λ2)
(q + 1)

]
H2, (16)

p =
λ1

(8π + 2λ2)

[
−3 +

(16π + 3λ2)

(8π + λ2)
(q + 1)

]
H2, (17)

and then, the cosmological parameter from equation (10) as:

Λ =

[
3λ2

(8π + 2λ2)
− λ2

(8π + 2λ2)
(q + 1)

]
H2. (18)
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The equation of state parameter (ω = p/ρ) is given by

ω = −1 +
(16π + 4λ2)(q + 1)
(24π + 4λ2) + λ2q

. (19)

3. Solution to field equations52

To solve the field equations, we assume the following condition for q [13]:

q = −1 + βH, (20)

where β is a constant. From the definitions of H and q, equation (13), we can write the solution as:

a = exp
[

1
β

√
2βt + k

]
, H =

1√
2βt + k

, q = −1 +
β√

2βt + k
(21)

We note from equation (21) that q is positive at early times, corresponding to deceleration, and negative53

at late times, corresponding to acceleration.54

We now use observations to estimate the values of the constant β, and the integration constant k.
If we evaluate equation (20) at the present time, we have

q0 = −1 + βH0, (22)

Observations tell us that q0 = −0.51 [14] and that H0 = 75.35 kms−1Mpc−1 [15]. Substituting these55

values into equation (22), we get β = 0.0065. From equation (21), we then get the value of k as56

k = 0.000175. Now, how do we select appropriate values for λ1 and λ2? Since the general relativistic57

limit is given by λ1 → 1, λ2 → 0, we choose λ1 = 0.9 and λ2 = 0.00016 to plot all subsequent figures.58

These values of β, k, λ1 and λ2 are used in plotting all figures.59

From the observational point of view, it is more useful to express the parameters in term of
redshift z. The average scale factor a in terms of redshift is given by

a(z) =
a0

1 + z
. (23)

From equation (21), we get
1
β

√
2βt + k = ln(a), (24)

and from equation (23), we get
ln(a) = ln(a0)− ln(1 + z). (25)

Hence, the Hubble and deceleration parameters in terms of redshift are as follows:

H(z) =
1

β[ln(a0)− ln(1 + z)]
, (26)

q(z) = −1 +
1

[ln(a0)− ln(1 + z)]
. (27)

We now plot the deceleration parameter q against the redshift z:60
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61

Figure 1: Deceleration parameter q against redshift z62

Using the t− z relationship, we get the energy density, pressure, cosmological parameter and
equation of state parameters as follows:

ρ =
λ1

(8π + 2λ2)

[
3 +

λ2

(8π + λ2)[ln(a0)− ln(1 + z)]

]
1

β2[ln(a0)− ln(1 + z)]2
, (28)

p =
λ1

(8π + 2λ2)

[
−3 +

(16π + 3λ2)

(8π + λ2)[ln(a0)− ln(1 + z)]

]
1

β2[ln(a0)− ln(1 + z)]2
, (29)

Λ =

[
3λ2

(8π + 2λ2)
− λ2

(8π + 2λ2)[ln(a0)− ln(1 + z)]

]
1

β2[ln(a0)− ln(1 + z)]2
, (30)

and

ω = −1 +
(16π + 4λ2)

3(8π + λ2)[ln(a0)− ln(1 + z)] + λ2
. (31)

We can plot these quantities as follows:63

64

Fig 2: Energy density against redshift z. Fig 3: Pressure against redshift z.65
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66

Fig 4: Cosmological parameter against redshift z. Fig 5: EOS parameter against redshift z67

4. Conclusions68

In this paper, we have analysed a model with variable cosmological parameter in flat FLRW69

space-time in f (R, T) theory. We graphed the various physical parameters against redshift. The70

vital characteristics of our model are the following. Our model was decelerating in the past, and is71

currently accelerating as can be seen from figure 1. The behaviour of the parameters q, ρ, p, ω and Λ72

are illustrated by means of figures 2-5. We have a variable cosmological parameter, which is large73

initially, and decreases with time. This could help in resolving the cosmological constant problem.74
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