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Abstract: Expansion of croplands and livestock activities over the time have been considered as 

major driver for deforestration in Peru. Such severe deforestration activities significantly reduced 

the number of timber species particularly the genus Cedrela spp. that have high economic and eco-

logical value in current time. Recently Cedrela spp. has been incorporated (28 August 2020) into 

appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and 

Flora (CITES), a group of species that could be in danger in near-future. Considering this value, we 

modelled the biogeographic distribution of 10 species of the genus Cedrela (i.e., C. odorata, C. montana, 

C. fissilis, C. longipetiolulata, C. angustifolia, C. nebulosa, C. kuelapensis, C. Saltensis, C. weberbaueri and 

C. molinensis) with the objective to identify if the area legally protected by Protected Natural Areas 

(PNA), and prioritizing research and conservation/restoration areas of this particular genus. In this 

regard, 33 different environmental variables were used (19 bioclimatic variables, 3 topographic, 9 

edaphic, solar radiation and relative humidity) throughout Peruvian Amazon using a maximum 

entropy model (MaxEnt). It was observed that 6.67% (86,235.24 km2) of the Peruvian territory pre-

sents a high probability of distribution of the evaluated species and whereas the PNA protects only 

4.42% (8363.09 km2) of the territory that covers genus Cedrela. Furthermore, we have identified that 

11.65% (21,345.16 km2) of the area have highly prone to degradation for genus Cedrela that needs 

urgent attention for protection and restoration. We believe that this study will contribute as a tool 

for the processes of conservation of threatened species, conservation of biodiversity, management 

and sustainable use of forest resources. 
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1. Introduction 

Forest covers have been reduced drastically as a result of agricultural expansion and 

livestock activities, deforestation, mining, urban expansion, in the Peruvian amazon over 

last decades [1,2]. In Peru 2 433 314 ha of Amazonian forests have been lost during 2001–

2019 [3]. Although the Amazon cover covers 60% of Peru [4], it has been fragmented by 

forest harvesting activities, a direct cause of deforestation, and indirectly promotes mi-

gratory agriculture [5], by eliminating the forest cover of approximately 0.5 ha for crop 

production [6,7]. Additionally, the selective falling of trees, mainly of species of high eco-

nomic value, has caused the near extinction of species such as mahogany (Swietenia mac-

rophylla) and cedar (Cedrela odorata) [8]. 

Cedrela spp. is a genus of tropical trees that includes species such as C. odorata L. and 

C. fissilis Vell., and that have been collected for wood for more than 500 years in Central 
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and South America, with C. odorata being the second most demanded tropical wood  

[9–12]. Due to the high value of the species of the genus Cedrela spp., their use has in-

creased since the end of the 1980s, mainly in Mexico, Brazil, Peru and Bolivia [13,14]. This 

trend has led to the collapse of the populations of Cedrela spp. due to overexploitation, but 

it has also led the international conservation community to call for greater protection un-

der the Convention on International Trade in Endangered Species of Wild Fauna and 

Flora (CITES). In Peru, the National Forest and Wildlife Service (SERFOR), incorporated 

as of August 28, 2020, the populations of the genus Cedrela spp. (C. odorata, C. montana, C. 

fissilis, C. longipetiolulata, C. angustifolia, C. nebulosa, C. kuelapensis, C. Saltensis, C. weberbau-

eri and C. molinensis) of Appendix II of CITES. The main objective of this study is to iden-

tify the spatio-temporal distribution of Cedrela spp. in the perspective ofconservation and 

sustainable use of this particular species [15]. 

This reality suggests the need to develop studies that contribute to decision-making 

in relation to the sustainability and conservation of the biodiversity of Cedrela spp. and its 

habitat. Species distribution models (SDM) are tools that combine species presence data 

with bioclimatic, edaphic, topographic factors, etc. and allow a more effective and gener-

ous support for conservation, biogeography, evolution and climate change actions  

[16–20]. The SDMs have made it possible to identify the distribution of timber forest spe-

cies on a regional scale [21,22], conservation of endemic species [23], wildlife [24,25], in 

order to intervene in areas to protect and identify the distribution of tree species in danger 

of extinction [26,27]. Among the SDMs, the maximum entropy algorithm (MaxEnt) [28], 

has been used to carry out the distribution of species under current and future conditions 

[29,30]. In this way, MaxEnt allows habitat mapping and produce credible, defensible and 

repeatable information, which contributes to a structured and transparent process of sus-

tainable management of natural resources by predicting the possible fragmentation or re-

duction of the potential area of forests or species in risk under future climate change sce-

narios [31]. 

From the identification of the potential distribution areas of a species, the areas with 

the best aptitude to carry out reforestation or recovery of degraded areas with the evalu-

ated species need to be quantified and monitored. Restoration is of great interest since 

13.78% (177 592. 82 km2) of the Peruvian territory has been identified as degraded, as a 

consequence of deforestation, livestock, agriculture, mining, forest fires, among others 

[32]. The strategies to be implemented must be oriented to the restoration and/or conser-

vation of threatened species that are widely distributed in geographic spaces integrated 

into the territorial order, through the use of environmental services, ecotourism, manage-

ment of renewable resources and productive practices promoting through the Protected 

Natural Areas (PNA) [33]. 

This study modeled the potential distribution of 10 species of the genus Cedrela (i.e., 

C. odorata, C. montana, C. fissilis, C. longipetiolulata, C. angustifolia, C. nebulosa, C. kuelapensis, 

C. Saltensis, C. weberbaueri and C. molinensis) through MaxEnt model, using the data on the 

presence of the species and 33 different variables (19 bioclimatic variables, 3 topographic, 

9 edaphic, solar radiation and relative humidity), identifying the distribution within PNA 

and areas degraded for forest recovery and conservation of natural resources in the Peru-

vian territory. 

2. Study Area 

This study covers the entire territory of Peru (1.300.000 km2 Aprox.), considering the 

Natural Protected Areas (PNAs) (Figure 1) belonging to the National System of Natural 

Areas Protected by the State (SINPNAE) (SINANPE) [33] and the degraded areas areas 

identified by the Ministry of the Environment of Peru [32]. 
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Figure 1. Study area and presence of Cedrela spp. species. 

3. Materials and Methods 

3.1. Datase 

The presence data (geographic coordinates) of the 10 species of the genus Cedrela spp. 

were obtained from the GBIF Global Biodiversity Information Service 

(https://www.gbif.org/), through the Species Explorer plugin in QGIS. The data were fil-

tered at a spatial resolution of 250 m [34] exported in CSV format to be used in the MaxEnt 

program. 

33 variables were selected (Table 1) to carry out the modeling. These variables include 

19 bioclimatic and solar radiation obtained from WorldClim 2.1 (https://www.world-

clim.org/) [35]; 3 topographic derived from digital elevation model (DEM), obtained from 

the United States Geological Survey (USGS) web portal (http://srtm.usgs.gov); the relative 

humidity obtained from the Climate Research Unit (CRU) [36] (www.cru.uea.ac.uk) and 

9 soil properties from SoilGrids 0.5.3 (http://soilgrids.org) [37]. All variables were rescaled 

to a spatial resolution of 250 m. to overcome the issues like collinearity between variables 

causes overfitting problems, increases uncertainty and decreases the statistical power of 

the model [38]. Therefore, using the function ‘removeCollinearity’ from the package ‘virtu-

alspecies’ [39] in R 3.6, the variables were grouped (clustering) according to a Pearson corre-

lation coefficient and considered those have the Pearson’s r ≥ 0.7. This threshold is an accepta-

ble measure to minimize multicollinearity of fitted models [38]. To select an important vari-

able for each cluster, a preliminary MaxEnt model was run (the configuration is explained in 

Section 3.2.) Using all the variables and the variable with the best performance in the Jack-

knife test [25] was selected (that is, the smallest difference in regularized training gains ob-

tained from a model generated with all criteria except that of interest and a model generated 

only with the criterion of interest [21], Table 1). 

Table 1. Variables for MaxEnt modeling of Cedrela spp. in Peru. 

Variable Units Symbol Δ Earnings in Jackknife 1 Clúster 

Bioclimatic 

Annual Mean Temperature °C bio01 0.7379 1 

Mean Diurnal Range °C bio02 0.7627 7 

Isothermality  bio03 0.9150 4 

Temperature Seasonality °C bio04 0.7097 9 

Max Temperature of Warmest Month °C bio05 0.6811 1 

Min Temperature of Coldest Month °C bio06 0.7068 1 
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Annual Temperature Range °C bio07 0.7655 9 

Mean Temperature of Wettest Quarter °C bio08 0.7608 1 

Mean Temperature of Driest Quarter °C bio09 0.7107 1 

Mean Temperature of Warmest Quarter °C bio10 0.7606 1 

Mean Temperature of Coldest Quarter °C bio11 0.7067 1 

Annual Precipitation mm bio12 0.6231 3 

Precipitation of Wettest Month mm bio13 0.7674 2 

Precipitation of Driest Month mm bio14 0.5525 3 

Precipitation Seasonality mm bio15 0.6692 9 

Precipitation of Wettest Quarter mm bio16 0.7524 2 

Precipitation of Driest Quarter mm bio17 0.5481 3 

Precipitation of Warmest Quarter mm bio18 0.7915 2 

Precipitation of Coldest Quarter mm bio19 0.5147 3 

Topographic 

Elevation above mean sea level msnm dem 0.6709 7 

Slope of the terrain ° slope 0.9104 7 

Cardinal orientation of the slope ° aspect 1.0117 5 

Edáficas 

pH in H2O a 0.30 m pHx10 ph 0.6543 7 

Cation exchange capacity at 0.30 m cmol kg−1 cec 0.7898 6 

Organic carbon at 0.30 m g kg−1 soc 0.8094 4 

Apparent density of the fine earth fraction cg/cm3 bdod 0.8881 8 

Volumetric fraction of coarse fragments cm3/dm3 (vol ‰) cfvo 0.7051 7 

Total nitrogen cg/kg nitrogen 0.8375 6 

Clay content % clay 0.8743 4 

Sand content % sand 0.8155 7 

Slime content % silt 0.7970 2 

Solar radiation MJ m−2 day−1 srad 0.6801 9 

Relative humidity % rhm 0.7777 3 
1 In bold, the variables with less variation between the regularized training win without the variable and with only the 

variable for each cluster, and that therefore was used in the final MaxEnt model. 

3.2. Methods 

The biogeographic distribution model for the 10 species of the genus Cedrela spp. was 

performed using a maximum entropy algorithm [28], which estimates the probability of 

potential distribution of each species from the presence data, using the open source soft-

ware MaxEnt ver. 3.4.1 (https://biodiversityinformatics.amnh.org/open_source/maxent/). 

For the validation of the model, randomly selected presence data were used, 75% for train-

ing and 25% for validation respectively [28]. The algorithm was run using 100 repetitions 

in 5000 iterations with different random partitions (Bootstrap method), other configura-

tions (i.e., extrapolation, graph drawing, etc.) were kept by default [40]. 

The resulting model was validated based on the area under the curve (AUC), calcu-

lated from the operating characteristic of the receptor (ROC) [28,41,42]. According to the 

AUC values, five performance levels are differentiated: excellent (>0.9), good (0.8–0.9), 

accepted (0.7–0.8), poor (0.6–0.7) and invalid (<0.6) [41,43]. We have used the logistic out-

put format to obtain the model of the 10 species evaluated, by generating a raster of con-

tinuous values in a range from 0 to 1. The raster obtained was reclassified into four ranges: 

(1) “High potential” habitat (> 0.6), (2) “moderate” habitat (0.4–0.6), (3) “low” habitat (0.2–

0.4) and (4) “no potential” habitat (<0.2) [21,22,25,44]. 

Subsequently, the areas of “high” distribution potential were overlapped with the 

Protected Natural Areas (PNA) [33], obtained from the geoserver 

(https://geo.sernPNA.gob.pe/visorsernPNA/) of the National Service of Natural Areas 
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protected by the State (SERNPNA) and in the same way with the degraded areas identi-

fied by the Ministry of the Environment of Peru (MINAM) and available on its geoserver 

(https://geoservidor.minam.gob.pe/) [32]. Finally, the distribution surface of the 10 species 

within the PNA and degraded areas were quantified. 

4. Result and Discussion 

4.1. Result 

The performance of the model obtained an AUC = 0.866 (Figure 2b), considered good 

(0.8 < AUC < 0.9). Likewise, the Jackknife test (Figure 2a) Obtained identified that the var-

iables Bio 19 (coldest quarter precipitation), Bio 12 (annual precipitation), pH and soil el-

evation (DEM) contributed highly in the biogeographic distribution model of the species. 

  
(a) (b) 

Figure 2. Jackknife performance of variables and Area Under the Curve (AUC). 

The high biogeographic distribution of the 10 species of the genus Cedrela spp. cover 

6.67% (86,235.24 km2) of the Peruvian territory (Figure 3a), of which the PNA cover 4.42% 

(8363.09 km2) of said distribution (Figure 3b). Likewise, there was a potential for recovery 

of degraded areas in an area of 11.65% (21,345.16 km2) with the species evaluated  

(Figure 3c). 

 

Figure 3. Distribution of the biographical model of the genus Cedrela spp., distribution of PNA and in degraded areas for 

recovery. 
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4.2. Discussion 

This study graphs the biogeographic distribution of 10 species of the genus Cedrela 

spp. (C. odorata, C. montana, C. fissilis, C. longipetiolulata, C. angustifolia, C. nebulosa, C. 

kuelapensis, C. Saltensis, C. weberbaueri and C. molinensis) also identified the spatio-temporal 

distribution, which will allow the establishment of forest management strategies [45], 

mainly for the species of high economic value that have been reduced by selective logging 

and overexploitation [8,11,14,15]. 

This study showed that MaxEnt based SDM tools that will allow the identification 

and prediction of geographic spaces with edaphoclimatic, topographic, equal or similar 

characteristics of the presence data [46]. Previous studies have used MaxEnt, this being 

the most accepted [47] and was related to the distribution of timber species at the regional 

[21,22], national [48–50] level and the identification of niches ecological for C. odorata in 

Peru [51]. 

Our model obtained a performance considered good (AUC = 0.866) [28,41,43,52], 

where the variables Bio 19 (precipitation of the coldest room), Bio 12 (annual precipitation), 

pH and soil elevation (DEM) present a greater contribution independently in the model. 

Therefore, as in this study, it is recommended to use climatic and edaphic variables in the 

species distribution modeling [53], considering that altitude was also a determining factor 

in the distribution ranges of a species [21,22]. Likewise, our results were in agreement 

with the location of the botanical collections and inventories of the evaluated species 

[12,49,50]. This will help the local stack holders to knowing the distribution of a inden-

gered species and implement strategies that allow the conservation of biodiversity, in one 

of the most megadiverse countries in the world such as Peru [54,55]. 

The PNAs play a fundamental role in the conservation and protection of biodiversity 

[56], so that 4.42% of the PNAs in Peru contains the genus Cedrela which highlights the 

importance of protecting these vulnerable species which were usually the most threatened 

[55]. Likewise, there are degraded areas [32] with the potential to be recovered with the 

Cedrela species whereas 11.65% of the Peruvian territory, promoting the practice of forest 

restoration to maintain natural ecosystems, through the installation of enrichment planta-

tions, regeneration natural management, agroforestry systems and silvicultural practices 

for the regeneration of degraded forests [4,57–59]. 

5. Conclusions 

The biogeographic model of the 10 species of the genus Cedrela spp. (C. odorata, C. 

montana, C. fissilis, C. longipetiolulata, C. angustifolia, C. nebulosa, C. kuelapensis, C. Saltensis, 

C. weberbaueri and C. molinensis) using MaxEnt obtained a good performance, with an 

AUC of 0.866. Our model has a high distribution in the Peruvian territory, coveringc6.67% 

(86,235.24 km2) of the surface. Likewise, contemplates that the potential distribution of the 

10 species were distributed within these areas in an area of 8363.09 km2 in 4.42% of its 

protected territory. Finally, our study identified that 11.65% (21,345.16 km2) of the areas 

identified as degraded present conditions to be recovered with one or more types of spe-

cies under study. This study will allow to restrore many ecosystem functions and recov-

ering many components of biodiversity in an original form. 
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