Taxonomic Discovery in *Cyphalonotus*: Phylogenetic Evidence for an Independent Origin of Extreme Sexual Size Dimorphism in the Araneid Spider *Poltys* †

Kuang-Ping Yu 1,2,3,4, Matjaž Kuntner 3,5,6,7,8 and Ren-Chung Cheng 1,2,*

1 Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Kuang-Ping.Yu@nub.s
2 Research Center for Global Change Biology, National Chung Hsing University, Taichung, Taiwan
3 Evolutionary Zoology Laboratory, Department of Organisms and Ecosystem Research, National Institute of Biology, Ljubljana, Slovenia; matjaz.kuntner@nib.s
4 Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
5 University of Ljubljana, Ljubljana, Slovenia
6 Jovan Hadži Institute of Biology, ZRC SAZU, Ljubljana, Slovenia
7 State Key Laboratory of Biocatalysis and Enzyme Engineering, and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, China
8 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
* Correspondence: bolasargiopet@email.nchu.edu.tw; Tel.: +886-422-840-416707
† Presented at the 1st International Electronic Conference on Biological Diversity, Ecology and Evolution, 15-31 March 2021; Available online: https://bdee2021.sciforum.net/

Abstract: *Cyphalonotus* is a poorly studied, Old World araneid spider genus whose phylogenetic proximity remains unknown due to the paucity of morphological and molecular data. We here report on a taxonomic and evolutionary research on these spiders with three main objectives: (i) to test the taxonomic composition of *Cyphalonotus*; (ii) to test its phylogenetic placement; and (iii) to place the male and female size variation of *Cyphalonotus* and related genera in an evolutionary context. Our original collection and field observations from Taiwan and China facilitated description of a new and a known species, and newly provided sequence data enable species delimitation, and phylogenetic analyses. The phylogenetic results reject all four classification hypotheses from the literature, and instead recover a well-supported clade *Cyphalonotus* + *Poltys*. We review the male and female size variation in *Cyphalonotus*, *Poltys*, and related genera. These data reveal that all known species of *Poltys* are extremely sexually size dimorphic (eSSD = females over twice the male size) reaching values exceeding 10-fold differences, while *Cyphalonotus* and other genera in their phylogenetic proximity are relatively sexually monomorphic (SSD < 2.0). This confirms an independent origin of eSSD in *Poltys*, one of multiple convergent evolutionary outcomes in orbweb spiders.

Keywords: sexual size dimorphism; eSSD; sexual size monomorphism; Araneidae; orb-web spiders; body size evolution