BDEE 2021

The 1st International Electronic Conference on Biological Diversity, Ecology and Evolution 15–31 MARCH 2021 | ONLINE

Chaired by **PROF. DR. MICHAEL WINK**

A study of biodiversity of Russian local sheep breeds based on pattern of runs of homozygosity

Tatiana Deniskova ^{1*}, Arsen Dotsev ¹, Henry Reyer ², Marina Selionova ³, Klaus Wimmers ², Gottfried Brem ^{1,4}, and Natalia Zinovieva ¹

- ¹ L.K. Ernst Federal Research Center for Animal Husbandry, Russia;
- ² Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Germany;
- ³ Russian State Agrarian University Moscow Timiryazev Agricultural Academy, Russia;
- ⁴ Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Austria.
- * Corresponding author: horarka@yandex.ru

Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst

L.K. Ernst Federal Research Center for Animal Husbandry

Abstract: A rapid spreading of cosmopolite breeds leads to decrease of population sizes of Russian local sheep that consequently result in their biodiversity loss. Estimation of runs of homozygosity in local sheep genomes will be informative tool to address their current genetic state. In this work, we aimed to address the distribution of the ROH and to estimate genome inbreeding in Russian local sheep breeds based on SNP-genotyping. Medium-density SNP-genotypes of twenty-three local sheep breeds (n=332) were obtained in our previous study. We used a consecutive runs method implemented in the R package "detectRUNS" to calculate

ROH which were estimated for each animal and then categorized in the ROH length classes (1-2 Mb, 2–4 Mb, 4–8 Mb, 8–16 Mb, >16 Mb). The frequency of short ROH segments (\leq 2 Mb) were the highest in all studied breeds (63.15% - 93.10%). The longest segments (> 16 Mb) were the least frequent and were missing in four breeds. The genomic coefficients based on ROH estimation varied from medium (0.114) to low (0.035). Thus, we found that Russian local sheep breeds are characterized by a low level of genomic inbreeding.

Keywords: sheep; genetic diversity; SNPs; genomic inbreeding

BDEE 2021

Results and Discussion

The frequency of short ROH segments (≤ 2 Mb) was the highest in all studied breeds (63.15% -93.10%). The longest ROH segments (> 16 Mb) were the least frequent (0.07% - 1.22%).

Figure 1. Distribution of the runs of homozygosity in length classes in Russian local sheep breeds

Results and Discussion

The minimum F_{ROH} was calculated in the Lezgin breed ($F_{ROH} = 0.035$) and the maximum was detected in the Russian Longhaired breed ($F_{ROH} = 0.114$).

Figure 2. Values of inbreeding coefficient calculated based on ROH (F_{ROH}) in Russian local breeds

BDEE 2021

Results and Discussion

BDEE

2021

Conclusions

- Our findings based on 50k data provide an evidence of a low genomic inbreeding in Russian local sheep populations.
- The study results provide useful information to design conservation programs for local genetic recourses of sheep.

Supplementary Materials

The details on the relevant dataset including the sampling locations for each breed, the SNP quality control and the phylogenetic links between the breeds are available online at

https://gsejournal.biomedcentral.com/articles/10.1186/s12711-018-0399-5.

Acknowledgments

The study was supported by Ministry of Science and Higher Education of the Russian Federation within theme No. 0445-2019-0024.

Link to photo: https://www.facebook.com/minobrnaukigov/

Thank you for your attention!

