In vitro bioguided trials on *Cinnamomum zeylanicum* percolate as target antimicrobial agent

Toma Nardjes Mouas ^{1,*}, Zahia Kabouche ¹, Meriem Benalileche ², and Yamina Benalileche²

¹ Université frères Mentouri-Constantine1, Laboratoire d'Obtention de Substances Thérapeutiques LOST, Campus Chasbet Ersas, 25000 Constantine, Algeria; ² Constantine 25000, Algeria.

•Corresponding author: mouas.toma.nardjes@umc.edu.dz

Laboratoire d'Obtention de Substances Thérapeutiques

Abstract: Cinnamomum zeylanicum gender, a wildly used plant as spice and medicinal plant, is investigated in both chemical and biological fields, since development of bio-guided trials on medicinal plants therapeutic target has increased recent years through pharmacology which is interested in discovering new molecules expressing a therapeutic activity and development of useful drugs by selecting the most active fraction and isolating the active compound responsible of the therapeutically effect.

Therefore, identification and quantification analysis of main bioactive compounds were performed in order to undergo bioguided tests using several solvents' polarities to evaluate its *in vitro* antimicrobial potential. To achieve this objective, qualitative and quantitative methods were used to identify bioactive compounds of the obtained extracts. The *in vitro screening of* antimicrobial effect was evaluated on 10 bacteria and 2 funguses by disc diffusion method which gave almost very interesting results for all tested pathogens in addition to richness in secondary metabolites.

Keywords: Medicinal plants; bioactive compounds; bioguide assays; antibacterial activity.

Results and Discussion

Phytochemistry

Leaves

Phenols
Esters
Sesquterpenes
Phenols Alcool
Aromatic aldehydes
Dioxydes
Cetones

Bark

Aromatic aldehydes Phenols
Alcools monoterpens
Sesquiterpens
Acids
Pyranocoumarins
Cetones
Furanocoumarins

Total phenol and flavonoid compound content results

- •The total phenol content showed total polyphenols content of (300±0.01) µg EGA/mg DE,
- and total flavonoids content of (158 \pm 0.1) µg QE/mg for ethyl acetate extract.
- •The total phenol content showed total polyphenols content of (28±0.15) μ g EGA/mg DE, and total flavonoids content of (2.5±0.2) μ g QE/mg for n-butanol extract.
- •Total flavonoids content of (50±0.05) µg QE/mg for chloroform extract.

Comparison

Strains	Inhibition diameter(referenc es)	Inhibition diameters(our results)
Candida albicans	, 27mm	23 mm
Staphylococcus aureus	16mm	13mm
Escherichia coli	30mm	30mm
Klebsiella pneumoniae	14mm	18mm
Pseudomonas	22 mm	24mm

Comparison

Strains	Inhibition diameter (references)	Inhibition diameter (our results)
Candida Albicans	27 mm	18mm
Proteus,	10mm	12mm
Kleb pneumoniae	14mm	24mm
Pseudomonas aeruginosa	20mm	20mm

Conclusions In the present work, *Cinnamomum zeylanicum* a wildly cultivated and used spice, famous in all pharmacopeias for its therapeutic effect was phytochemically and biologically assessed, by subjecting its ethanol percolate to a bio-guided fractioning using different solvent polarities, identification and quantification of secondary metabolites by layer chromatography (TLC) and UV spectroscopy, undergoing in vitro biological trials by mean of anti bacterial and antifungal activities on several referential strains, which gave an important inhibiting activity against Gram (+) bacteria : Staphylococcus aureus, seven Gram (-) bacteria : Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, Proteus Sp, and one fungi : Candida albicans. Obtained results, open large perspectives on bioguided fractioning in order to identify bioactive molecules responsible of therapeutic effect and pharmaceutical enhancement of studied spice promoting it as an efficient nutraceutical for treating human microbial resistant phenomenon using some preparations as toothpastes, chewingums.

Acknowledgments

Authors would like to thank Algerian Ministry of Higher Education and Scientific Research DGEFS, and the Algerian Directorate General for Scientific Research and Technological Development DGRSDT for financial fund.

