utad Isabel Carvalho - PhD in Veterinary Sciences

Genetic diversity among selected ESBL and
Carbapenem-producing RJebsiella pneumoniae i̊solates from urocultures in aportuguese hospital

Isabel Carvalho*, José António Carvalho, Ana Paula Castro,

Gilberto Igrejas, Carmen Torres and Patrícia Poeta

FCT
Spain/Portugal, may 2021

Antibiotic resistance - A public health problem

ANTIBIOTICS: HANDLE WITH CARE CIN

BEFORE USING ANTIBIOTICS

ANTIBIOTIC RESISTANCE can lead to increased DEATHS. Step into change: THINK TWICE.

```
antibioticawarenessweek.org
#AntibioticsThinkTwice
ffacebookcom/WHOWPRO E ewHOWPRO 啧youtube.com/WHOWPRO
```

(y) World Health Organization Western Pacific Region
antibioticawarenessweek.ors
f facebook.com/WHOWPRO E @WHOWPRO youtube.com/WHOWPRO

BECAUSE OF MISUSE

BE PART OF THE
Always take the full prescription,
even if you feel better
© Never share or use leftover antibiotics \boxtimes Never buy antibiotics without a prescription

Fig. 1 and 2 - Campaigns related to the two main factors for antibiotic resistance: overuse and misuse of antimicrobials (WHO, 2018)

Klebsiella pneumoniae

- Major pathogen implicated in nosocomial infections that is known to spread easily;
- Frequently associated with resistance to the highestpriority critically important antimicrobials.

\checkmark Determine the carriage rate of ESBL-producing K. pneumoniae in a hospital in Portugal;
\checkmark Analyze the type of enzymes implicated;
\checkmark Determine the genetic diversity (MLST) among selected carbapenem-and ESBL-producing K. pneumoniae isolates from human urinary infections.
Sampling

General resistance phenotype

- ESBL-production was detected in 26.5% of the isolates (13/49);
- Most of them carried the gene of CTX-M-15 enzyme ($\mathrm{n}=10$);
- It is important to note that all ESBL-positive and negative isolates carried the $K P C_{2 / 3}$ gene and showed carbapenem resistance.

Resistance phenotype

Table 1 - Resistance phenotype and genotype associated with different sequence types (ST) for selected K. pneumoniae isolates from urocultures in a Portuguese hospital.

Sample	Date	ESBL ${ }^{\text {b }}$	Resistance phenotype ${ }^{\text {a }}$	Resistance genotype	MLST ${ }^{\text {c }}$
X2142	15/12/2016	P	AMC, FOX, CTX, CAZ, CHL, CIP, CN, SXT, S, IMP, MRP, ERT	KPC-2/3, SHV-12, TEM	ST147
X2143	15/12/2016	P	AMC, FOX, CTX, CAZ, CIP, CN, SXT, S, TET, IMP, MRP, ERT	CTX-M-15, KPC-2/3, SHV-27, TEM, tetA	ST280
X2157	27/04/2017	P	AMC, FOX, CTX, CAZ, CHF, CIP, CN, SXT, S, IMP, MRP, ERT	CTX-M-15, KPC-2/3, SHV-28, TEM	ST15
X2165	25/05/2017	P	AMC, CTX, CAZ, CIP, CN, SXT, IMP, MRP, ERT	KPC-2/3, SHV-28, TEM	ST15
X2175	10/06/2018	P	AMC, CTX, CAZ, CIP, SXT, S, IMP, MRP, ERT	CTX-M-15, KPC-2/3, SHV-12, TEM	ST15
X2232	20/01/2017	P	AMC, CTX, CAZ, CIP, CN, SXT, S, TET, IMP, MRP, ERT	KPC-2/3, SHV-27, TEM, tetA	ST280
X2168	20/05/2018	N	AMC, CTX, CAZ, CN, SXT, S, IMP, MRP, ERT	KPC-2/3, SHV-11, TEM	ST348
X2173	20/05/2018	N	AMC, FOX, CTX, CAZ, IMP, MRP, ERT	KPC-2/3, SHV-26, TEM	ST34

Legend: ${ }^{\text {a }}$ AMC: amoxicillin+clavulanic acid; FOX: cefoxitin; CTX: cefotaxime; CAZ: ceftazidime; CHL: chloramphenicol; CIP: ciprofloxacin; CN: gentamicin; SXT: trimethoprim + sulfamethoxazole; S: streptomycin; TET: tetracycline; IMP: imipenem; MRP: meropenem; ERT: ertapenem;
${ }^{\mathrm{b} P}$ - Positive, N - Negative;
'MLST - MultiLocus Sequence Typing.
\checkmark These findings indicate the genetic diversity among urinary infections isolates in our hospital.
\checkmark The KPC2/3 is the main mechanism of carbapenem resistance in K. pneumoniae isolates in the studied period, frequently detected together with CTX-M-15 gene.
\checkmark Three different ST were detected among ESBL-producing K. pneumoniae isolates (ST15, ST147 and ST280).

Acknowledgments

- Isabel Carvalho gratefully acknowledges the financial support of "Fundação para a Ciência e Tecnologia" (FCT - Portugal) through PhD grant SFRH/BD/133266/2017 (Medicina Clínica e Ciências da Saúde). Part of this study was financed by the project SAF2016-76571-R from the Agencia Estatal de Investigation (AEI) of Spain and FEDER of EU.
- This work was supported by the Associate Laboratory for Green Chemistry LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).

Thank you for your attention!

isabelbarrosocarvalho@utad.pt https://www.researchgate.net/profile/Isabel-Carvalho-14

