Bacteriocins as a Novel Natural Food Preservatives

Desalegn Amenu (PhD Candidate) in Food Microbiology Jimma University

Introduction

✓ **Bacteriocins** are generally defined as ribosomally synthesized peptides produced by bacteria that have bacteriostatic or bactericidal activity against other related and unrelated microorganisms.

✓ "Colicin" the first bacteriocin, *Escherichia coli*

Application bactericins natural food preservatives

✓ consumers are aware of the health concerns regarding food additives

✓ strict government requirements to guarantee food safety

✓ side effects of chemical food preservatives

✓ food producers have faced conflicting challenges

Figure 1. Bacteriocins Classification (Alvarez sieiro et al., 2016).

Bacteriocin Mode of Action

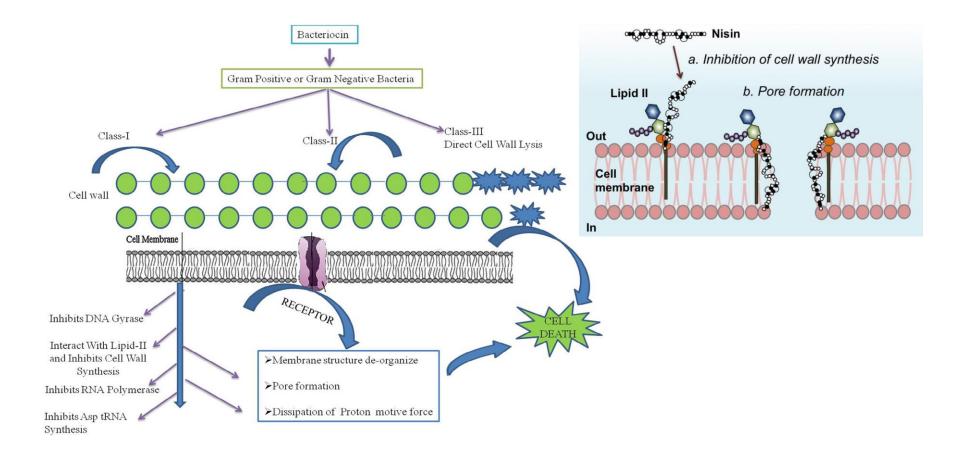


Figure 2. Mechanism of Action of Classes I, II and III Bacteriocins ((Alvarez-Sieiro et al., 2016)

Molecular technique to detect bacteriocins PCR

 Amplification of specific gene responsible for bacteriocin, \checkmark Differentiation of closely related bacteria in mixed populations. **DNA technology** Expression of bacteriocin genes Environmental influence of bacteriocin genes **Fluorescence technology** Distribution of bacterioigenic strain in the food metrics ✓ Heterogeneous response of bacterial populations to bacteriocins

Purification techniques	Descriptions
1) Ammonium sulphate precipitation	 It is used to precipitate, bacteriocin, partial purification of peptides
1) Ion exchange chromatography	 used to purify bacteriocin based cationic/ anionic property, high strength exchanger is required for large scale purification
1) Affinity chromatography	 Used to determine bacteriocin based on ionic attraction and ligands are used
1) Size exclusion chromatography	 ✓ Determine bacteriocins based on molecular weight ✓ Generally used after the ammonium salt precipitation
1) HPLC and Reverse phase HPLC	 ✓ Best method, b/s complete purification bacteriocin ✓ It is highly recommended method of purification of bacteriocin
1) Polyacrylamide gel electrophoresis (PAGE)	 ✓ Uses stacking gel and resolving gel. ✓ It is used for determining the purity and the molecular weight of the bacteriocins
 UV–Visible spectrophotometry (UV–Vis spectroscopy) 	 Qualitative purification, spectra of crude extract is compared with the standard curve of bacteriocins

New development of bacteriocin application

Conjugation of multiple bacteriocinogenic plasmids.

- Genes involved in bacteriocin biosynthesis
 - ✓ genetic engineering,

Bacteriocin as promising natural food preservative

≻lt GRAS

>It is not poisonous to eukaryotic cells.

>It possesses broad-spectrum activity against foods spoiling microorganisms.

≻It is pH and heat resistant.

>It shows minimum inactivation when exposed to the protease enzymes.

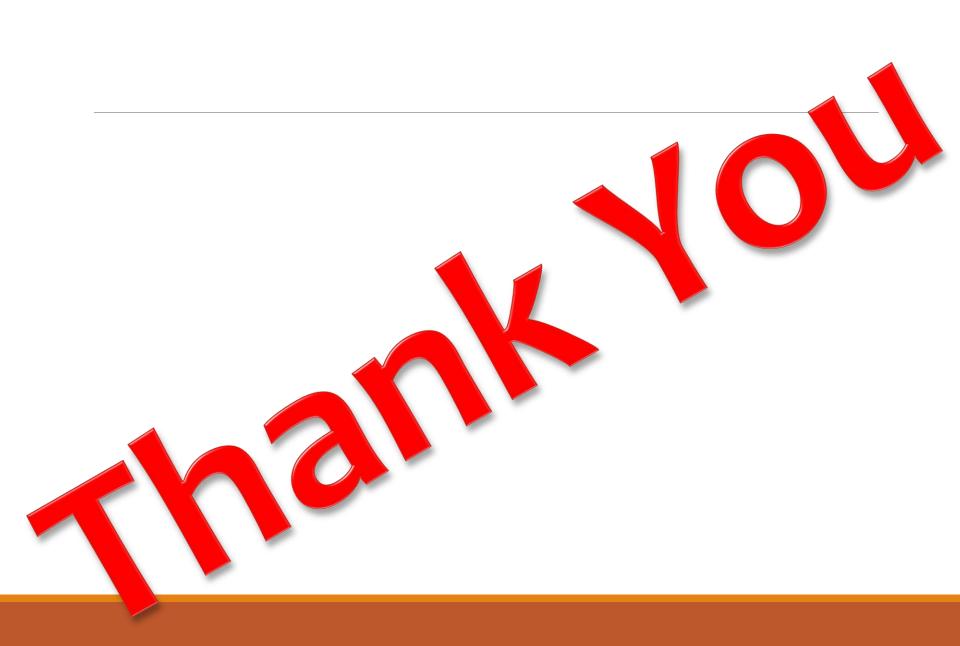
Bacteriocins as Novel Natural Food Preservation

Application of LAB bacteriocins how/when (Criteria)

- ✓ GRAS property
- ✓ non-toxic on eukaryotic cells
- ✓ inactivated by digestive proteases
- ✓No damage to normal gut microflora
- ✓ they are usually thermostable and pH-tolerant
- ✓ wide antimicrobial spectrum
- ✓ industrial use
- ✓ satisfy the increasing consumers'

✓ Reduced risks

Why LAB Bacteriocins are safe to use as natural preservative


- ✓ GRAS property
- ✓ non-toxic on Eukaryotic cells
- ✓inactivated by proteases
- ✓ No damage to normal gut microflora
- they are usually thermostable and pH-tolerant
- ✓ wide antimicrobial spectrum

Application methods

- 1) Inculcation of bacteriogenics strains
- 2) Direct inoculation of Bacteriocins
- 3) Use previous fermented foods

Benefits' of Bacteriocin as food preservative

- \checkmark decreases contamination
- \checkmark extends the shelf life of food
- \checkmark decreases economic losses
- \checkmark Reduce thermal effect of chemical preservatives
- \checkmark provides alternative preservation barriers for "novel" foods less acidic,

