

# Hollow Cantilevers with Holes

Wujoon Cha<sup>1\*</sup>, Matthew F. Campbell<sup>1</sup>, Akshat Jain<sup>1</sup>, Igor Bargatin<sup>1\*</sup>

<sup>1</sup>Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, US

Corresponding Authors:

Wujoon Chawujoon@seas.upenn.eduDr. Igor Bargatinbargatin@seas.upenn.edu

### **Hollow Cantilevers with Holes**





#### Hollow AFM Cantilever with Holes

Since its invention, atomic force microscopy (AFM) has enhanced our understanding of physical and biological systems at sub-micrometer scales. As the performance of AFM depends greatly on the properties of the cantilevers, many works have been done to improving cantilevers by means of modifying their geometries via lithography [1] and ion-beam milling [2,3] that primarily involved opening areas on the cantilever's face, resulting in high resonant frequency, low spring constant, and low hydrodynamic damping. Similar improvements were achieved using a hollow beam cantilever with nanoscale wall thickness [4]. In fact, the combination of these two approaches (in-plane opening and hollow beam) can result in unique metamaterial structures with tunable properties [5], but it has not been explored for AFM application.

In this work, we explore the hollow AFM cantilevers with in-plane modifications. We accomplished this by (1) taking a commercial solid silicon cantilever, (2) making a different number of holes on the face using pulsed laser micromachining, and (3) coating them with alumina using atomic layer deposition and etching the internal silicon that results in a hollow probe with holes. We present the effects of these modifications on the cantilever's resonant frequency, quality factor, and spring constant in air. This work provides an insight into strategies for tuning cantilever's properties for both flexural and torsional modes.

Keywords: Atomic force microscopy (AFM); flexural resonance; torsional resonance; hollow cantilever

#### **Reference:**

[1] Nilsen, M.; Port, F.; Roos, M.; Gottschalk, K.-E.; Strehle, S. Journal of Micromechanics and Microengineering 2019, 29, (2), 025014.

[2] Bull, M. S.; Sullan, R. M. A.; Li, H.; Perkins, T. T. ACS Nano 2014, 8, (5), 4984-4995.

[3] Hodges, A. R.; Bussmann, K. M.; Hoh, J. H. Review of Scientific Instruments 2001, 72, (10), 3880-3883.

[4] Cha, W.; Nicaise, S.; Lilley, D.; Lin, C.; Bargatin, I. Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, South Carolina, 2018; Transducer Research Foundation: Hilton Head Island, South Carolina, pp 232-233.

[4] Lin, C.; Nicaise, S. M.; Lilley, D. E.; Cortes, J.; Jiao, P.; Singh, J.; Azadi, M.; Lopez, G. G.; Metzler, M.; Purohit, P. K.; Bargatin, I. Nature Communications 2018, 9, (1), 4442.

### **Atomic Force Microscopy (AFM)**

#### **AFM Mechanism**

#### **AFM Operation**





Dufrêne et al., Nature Nanotech. (12) 2017

- Measures forces between probe tip and sample surface
- Optical lever system measures deflection of cantilever

- Cantilever tip in direct contact with sample
- Sample and/or tip has high risk to be damaged

**Contact Mode** 

- Cantilever vibrates at or near resonant frequency
- Tip interact with sample minimally, and has lower risk to cause damage

### **AFM Vibration Modes & Challenges**

#### **Flexural Mode**

- Cantilever vibrate vertically
- Vertical force measurement, topographic imaging

#### **Torsional Mode**

- Cantilever twists
- Friction force measurement, high-frequency measurement, phase imaging



Song & Bhushan, Appl. Phys. (99) 2006

#### Challenges

Slow response of cantilever requires long timeConventional probes can damage soft samples

### Improving AFM Cantilever & Objectives

#### **Faster Imaging**

Ring-down Time (characteristic response time)

 $\tau = \frac{Q}{\pi f_0}$ 

*Q*: quality factor  $f_0$ : resonant frequency

#### **AFM** in Liquid

Increased damping reduces Q



#### Not applicable to air environment

#### Small Cantilever

 Shorter cantilever increases f<sub>0</sub>



Dufrêne et al., Nature Nanotech. (12) 2017

- Increases spring constant
   Optionally difficult to detect
- Optically difficult to detect

#### Softer Cantilever

Spring Constant

$$c = \frac{3EI}{L^3}$$

- E: Young's modulus
- I: cross-sectional moment of inertia
- L: cantilever's length

#### **Micromachined Cantilever**

- Low k and high  $f_0$
- Increased force sensitivity



Hodges et al., Rev. Sci. Inst. (72) 2011

Increased Q

•Cantilever with high  $f_0$ , low Q, and low k

### **Theory: Resonance Properties**



 $\tau = \frac{Q}{\pi f_0}$ 

**Ring-down time** 

Resonant frequency (f<sub>0</sub>)



*m* : effective mass*k* : effective spring constantγ: damping coefficient



Hydrodynamic loading

$$\gamma = \frac{\pi^2}{2} \rho_f W^2 L f_0 \Gamma_{im}$$

 $Q\!\uparrow au\uparrow$ 

- *L*, *W*: length and width of cantilever
- $\rho_f$ : density of fluid
- $\Gamma$ : hydrodynamic function

### **Reducing Mass: Hollow Cantilever**

#### **Hollow Cantilever**



Martinez et al., J. Micromech. Microeng. (26) 2016



Kim et al., Nano. Lett. (16) 2016

#### **Patterned Cantilever**









Nilsen et al., J. Micromech. Microeng. (29) 2019



Lin, Bargatin et al., Nat. Comms. 2018

#### **Objectives**

#### •Use these two approaches to improve AFM cantilevers

### **Fabrication Process**



### **Fabricated Hollow Cantilever with Holes**



#### **Robustness**



### **Preliminary Experimental Result (Flexural)**



### **Theory: Hollow Beam Geometry**

$$f_{0} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

$$k = \frac{3EI}{L^{3}}$$
E: Young's modulus of cantilever material *L*: moment of inertia (*I*)
Effective cantilever density (*p*)
Torsion Constant (*J*)
$$\frac{f_{0}}{WH} = \frac{1}{12} (H^{2} + W^{2})$$

$$\frac{WH}{W} = \frac{2W^{2}H^{2}t}{W + H}$$





\*Equations used to derive these plots can be found in the supplementary slide at the end

• Hollow beam cantilevers with nanoscale walls have properties that depends on thickness (tunability)

### Simulation: Hollow Cantilever with Holes

• Simulation results show  $f_0$  and k varies with wall thickness and number of holes

**Flexural Mode** 

#### **Torsional Mode**



### **Conclusion & Future Work**

#### Conclusion

- High  $f_0$  and low k in both flexural and torsional mode
- Tunability based on wall thickness and number of holes
- Potential benefits for dynamic biological samples



#### **Future Work**

- Viscous fluid damping simulation
- Torsional mode measurements



### Acknowledgments & Reference

Thanks to:

- Dr. Igor Bargatin, Dr. Robert Carpick, Akshat Jain, Matthew Campbell, Drew Lilley, Aarushi Singh
- NSF CBET-1845933, GAANN fellowship

Special thanks to:

 Singh Center for Nanotechnology staffs including Jarrett Gilinger, Eric Johnston, David Jones, Meredith Metzler, Dr. Matthew Brukman, Dr. Jamie Ford, Dr. Hiro Yamamoto

## Thank You.



Supplementary Slides

### **Theory: Hollow Beam Cantilever**

|                                         | Flexural                                                                                                                                                                                                                                | Torsional                                                                                                  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Vacuum Resonant                         | $\frac{1.758}{\pi I^2} \int \frac{EI}{2}$                                                                                                                                                                                               | $\frac{1}{AI} \left[ \frac{GJ}{2} \right]$                                                                 |
| Trequency $f_{0(v)}$                    | $\mu_{L^{-}} \sqrt{\rho_{c} A}$                                                                                                                                                                                                         | $\Gamma_{L} \sqrt{\rho_{c} r_{p}}$                                                                         |
| Damped Resonant<br>Frequency $f_{0(f)}$ | $f_{0(\nu)} \sqrt{\frac{1}{1 + \left(\frac{\pi \rho_f W}{4 \rho_c H}\right) \Gamma_{re}}}$                                                                                                                                              | $\int_{\tau}^{T_{t(v)}} \sqrt{\frac{1}{1 + \left(\frac{\pi \rho_f b^4}{8 \rho_c I_p}\right) \Gamma_{re}}}$ |
| Quality Factor Q <sub>f</sub>           | $\frac{\frac{4\rho_{c}H}{\pi\rho_{f}W}+\Gamma_{re}}{\Gamma_{im}}$                                                                                                                                                                       | $\frac{\frac{8\rho_c I_p}{\pi\rho_f b^4} + \Gamma_{re}}{\Gamma_{im}}$                                      |
| Spring Constant k                       | $ \left( \left( k_{bending} \right)^{-1} + \left( k_{shear} \right)^{-1} \right)^{-1} $ $ = \left( \frac{1}{\left[ \frac{H^3 E t}{2L^3} \left( 1 + 3\frac{W}{H} \right) \right]} + \frac{1}{\left[ \frac{GA}{L} \right]} \right)^{-1} $ | GJ<br>L                                                                                                    |

• Thin-Walled Hollow Cantilever:

$$\begin{split} I &= \frac{(W+2t)(H+2t)^3}{12} - \frac{bh^3}{12} \approx \frac{1}{6}H^3t \left(1+3\frac{W}{H}\right) & (t \ll W, H) \\ \rho_c &\approx \frac{([(W+2t)(H+2t)-WH]\rho_{alumina})}{WHL} = \frac{(H+W)}{WHL}t\rho_{alumina} & (t \ll W, H) \\ A &= (W+2t)(H+2t) \approx WH & (t \ll W, H) \\ J &= \frac{4t[(W+t)(H+t)]^2}{2(W+H+2t)} = \frac{2t(W+t)^2(H+t)^2}{W+H+2t} \approx \frac{2W^2H^2t}{W+H} & (t \ll W, H) \\ I_p &\approx \frac{(W+2t)(H+2t)t(W+H+4t)}{3} & (t \ll W, H) \end{split}$$

Sader, J. App. Phys. (84) 1998; Green & Sader, J. App. Phys. (92) 2002; Green et al., Rev. Sci. Inst. (75) 2004

18