Ist International Conference on dicromachines and Applications DAPRIL ADVIONING

Precise Layer Separation of Two-Dimensional Nanomaterials for Scalable Optoelectronics

Joohoon Kang ^{1,*}

¹ School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)

* Corresponding author: joohoon@skku.edu

Introduction

Biography

- BS and MS at Yonsei University (MSE)
- PhD at Northwestern University (MSE)
- Postdoc at UC Berkeley (Chemistry)
- Assistant Professor at SKKU (MSE)

Research Interests

- Nanomaterials *processing* for optoelectronic devices
- Nanomaterials: Carbon nanotubes, graphene-like 2D materials, perovskites
- Devices: Field effect transistor (FET), photodetector, light emitting diodes (LED)

Acknowledgement

Prof. Mark C. Hersam Prof. Lincoln Lauhon Prof. Koray Aydin Prof. Deep Jariwala Prof. Paul Alivisatos Prof. Jian Zhu Prof. Jeong Ho Cho Prof. Hong-Sub Lee Prof. Jia Lin

Prof. Peidong Yang Dr. Josh Wood Dr. Vinod Sangwan Dr. Chad Husko Dr. Xiaolong Liu Dr. Spencer Wells Qiao Kong Hersam Group Members

Northwestern University

Wavelength of light

Electromagnetic Spectrum

✤ Why 1550 nm?

- Wavelength dependent optical loss in silica
- Minimum attenuation at 1550 nm
- "C-band" 1530 nm to 1560 nm

Tamura, et al., Optical Society of America Th5D.1 (2017)

Optical telecommunications

Light delivers information through optical fiber

The worldwide optical fiber network enables high-speed telecommunications

Optoelectronics

Electron-photon interaction

Silicon for optoelectronics

Optical properties of silicon

- Indirect bandgap low photon-electron conversion efficiency
- Bandgap mismatch (1.12 eV at room temperature)
- Requires gain medium: direct bandgap III-V semiconductors (e.g., InGaAs 0.8 eV)
- InGaAs complicated process, ineffective production cost, fatal gases, etc.

Two-dimensional semiconductors

Structure-dependent optical properties

Phosphorene	III-VI compounds	TM	DCs	2D perovskites
	o de consector de la consector	anni litteres	Allhin	
2.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.0		Bulk	h μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	1.0 1.0 0.8 0.6 0.4 0.2 0.0 300 400 500 600 700 Wavelength (nm)
Materials	1L	2L	3L	Bulk
Phosphorene	1.88 eV (D)	1.3 eV (D)	0.9 eV (D)	0.3 eV (D)
III-VI (InSe)	2.6 eV (I)	1.9 eV (I)	1.7 eV (D)	1.3 eV (D)
TMDCs (MoS ₂)	1.9 eV (D)	1.6 eV (I)	1.5 eV (I)	1.3 eV (I)
2D perovskites (CsPbBr)	3 eV (D)	2.7 eV (D)	2.5 eV (D)	2.3 eV (D)

Kang et al., Acc. Chem. Res. 50, 943 (2017); Sci. Adv. 6, eaay4045 (2020)

Black phosphorus

Structure-dependent optical properties

- Ideal properties for optical communication
- 0.8 eV (3L 5L), direct bandgap
- Except for 3L 5L can be scattering sources
- Chemical degradation under ambient
- ➢ Goal: to produce large quantity 3L − 5L BP without chemical degradation

Solution processing

Maximize dispersion stability, minimize processing residue

 \geq

Good to stabilize, but hard to remove residual solvent due to high boiling point

Solution processing

Maximize dispersion stability, minimize processing residue

Kang et al., ACS Nano 9, 3596 (2015); PNAS 113, 11688 (2016); Adv. Mater. 30, 1802990 (2018); ACS Photonics 5, 3996 (2018)

Oxidation during the process

Minimize oxygen exposure

Solution processing

Maximize dispersion stability, minimize processing residue

- Stable 2D semiconductor dispersions in largescale
- Co-solvent approach minimizes processing residues
- Monolayer to multilayer in each dispersion *mixed layer-dependent properties*
- How to extract targeted layer thickness in largescale?

Kang et al., ACS Nano 9, 3596 (2015); PNAS 113, 11688 (2016); Adv. Mater. 30, 1802990 (2018); ACS Photonics 5, 3996 (2018)

Preferred sample thickness for telecommunications

Targeted thickness sorting from polydisperse solution

Kang et al., PNAS 113, 11688 (2016)

Layer sorting via density gradient ultracentrifugation

Buoyant density differentiation

Why monolayer?

 Monodisperse MoS₂ dispersion (1L enrichment > 90%)

Kang et al., Acc. Chem. Res. 50, 943 (2017); Splendiani et al., Nano Lett. 10, 1271 (2010)

Sedimentation-based DGU

- Separation based on weight
- Lower speed
- Stop at proper time
- Not completely sedimented
- Suitable for size sorting

- Separation based on density
- High speed
- Long running time
- Completely sedimented
- Suitable for layer sorting

(

Buoyant density of 2D-surfactant composite

$$\rho(N) = \frac{\rho_{S}N + 2m_{surf}\sigma + 2\rho_{H_{2}O}t_{H}}{(N+1)t_{MoS_{2}} + 2t_{A} + 2t_{H}}$$

o_s = sheet density	$ \rho_{H20} $ = water density
N = number of layers	t_H = hydration layer thickness
m_{sc} = surfactant mass	t_{MoS2} = MoS ₂ thickness
σ = packing density	<i>t</i> _A = anhydrous layer thickness

Layer-dependent buoyant density

Kang et al., Nat. Commun. 5, 5478 (2014); Acc. Chem. Res. 50, 943 (2017)

MoS₂ layer separation

Increasing first iteration buoyant density

Layer separation based on the buoyant density via DGU

F7 − 90% 1L enriched (strong photoluminescence emission)

Kang et al., Nat. Commun. 5, 5478 (2014); Acc. Chem. Res. 50, 943 (2017)

Other examples

Insulating hexagonal boron nitride (h-BN)

- Layer separation based on the buoyant density via DGU
- Graphene (metal), hexagonal boron nitride (insulator), transition metal

dichalcogenides (semiconductors) including MoS₂, WS₂, MoSe₂, WSe₂, and ReS₂

Enabling layer-dependent studies/uniform thin-film formation in largescale

💥 📣 Kang et al., Nat. Commun. 5, 5478 (2014); Nano Lett. 15, 7029 (2015); Nano Lett. 16, 7216 (2016); Acc. Chem. Res. 50, 943 (2017)

Processing BP for NIR light generator

Mass production of targeted material

🗽 🚰 🛒 🌾 Kang et al., Nat. Commun. 5, 5478 (2014); Nano Lett. 15, 7029 (2015); Nano Lett. 16, 7216 (2016); Acc. Chem. Res. 50, 943 (2017)

Processing BP for NIR light generator

Transfer and device evaluation

- > Strong light amplification in the ideal range of NIR applications
- Tunable wavelength based on the Si nanocavity structure
- Optically pumped light generation

High-performance phototransistor

- The device exhibits the *highest* photoresponsivity (>10⁷ A/W) and among the *fastest* photoresponse time.
- > FLATFORM formation for scaling up.

 $10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1}$

Rise time (s)

Thin-film photodetector

- III-VI FLATFORM-based photodetector
- Co-solvent process enables high-quality thin-film (4 orders improved electrical conductivity)
- Best thin-film based photoresponsivity

Kang et al., Adv. Mater. 30, 1802990 (2018); ACS Photonics 5, 3996 (2018)

P (W/cm²)

Electrically-pumped light generation

Single-crystalline Ruddlesden-Popper phase perovskites

- Ruddlesden-Popper phase quasi-2D layered perovskite- (BA)CsPbBr
- Layer-dependent optical properties from violet, blue, to skyblue emission

Electrically-pumped light generation

LED emitting intrinsic bandgap wavelengths

Applicable for electrically-driven BP-based NIR emitter (ongoing)

Kang et al., Sci. Adv. 6, eaay4045 (2020)

- Scalable production of electronically- and optically-active nanomaterials via solution-based processing.
- Deoxygenated processing minimizes chemical reaction during the solution-based processing
- Density gradient ultracentrifugation originated from biochemistry allows to maximize monodispersity of nanomaterials in structure.
- Solution-processed high-purity semiconducting materials directly applied to photonic device applications.

Thank you for your attention

joohoon@skku.edu