ICMA 2021

1st International Conference on Micromachines and Applications 15-30 APRIL 2021 ONLINE

Rotating Micromachines with Stratified Disk Architecture for Dynamic Bioanalysis

<u>Gungun Lin^{1,*}</u>, Yuan Liu¹, Guan Huang¹, Yvonne Chen¹, Denys Makarov², and Dayong Jin¹

 ¹ University of Technology Sydney, 15 Broadway, Ultimo, 2007, Sydney, NSW, Australia;
² Helmholtz-Zentrum Dresden-Rossendorf e.V. Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany

* Corresponding author: gungun.lin@uts.edu.au

Graphic abstract

Abstract

Magnetic microrobots with versatile mechanical motion will enable many exand in-vivo applications. Unfortunately, monolithic integration of multiple functions in a streamlined microrobotic body is still challenging due to the compromise between fabrication throughput, device footprints, and material choices. In this talk, I will present a unified framework architecture for microrobotic functionalization to enable magnetically steered locomotion, chemical sensing and in-vivo tracking. This has been achieved through stratifying stimuli-responsive nanoparticles in a hydrogel micro-disk. We uncovered the key mechanism of leveraging spatially alternating magnetic energy potential to control a Euler's disk-like microrobot to locomote swiftly on its sidewall. The results suggest great potential for microrobots to locomote while cooperating a wide range of functions, tailorable for universal application scenarios.

Keywords: Magnetic micromachine; stratified disk; dynamic bioanalysis; rotating magnetic field; microrobot functionalization

Introduction: Micromachines for *In-vivo* Applications

Microrobots are envisioned to perform site-selective tasks in-vivo

- Biocompatibility & degradability
- Actuation
- Navigation
- Bio-barriers
- Imaging

Adv. Mater. **2021**, *33*, 2000512, doi:10.1002/adma.202000512.

Introduction: Various Microrobot Body Designs

Concept of this Work: Streamlined Stratified Disk Body

Unpublished data

2021

Approach: Inspired by Euler'disk-like Gyration

Euler'disk gyrating on a surface

Video source: http://www.teachersource.com

• Inspiration: rapid gyration along its low-friction sidewall

Our Approach: Magnetic Actuation of the Micro-disk

Magnetic stirrer as power source

ICMA 2021

Results: Mapping of the Magnetic Field Distribution above the Stirrer

Spatially non-uniform magnetic field

Results: Analysis of the Forces Exerted on the Disk

Asymmetric magnetic force components

Results: Magnetic Actuation at Low Rotating Speeds

- The disk stays still before rotating the magnet
- The onset of locomotion at low speed of rotation (< 200 rpm)

Results: Orbital Revolution of Disks with Varied Modes

MR-1: Disk with random distribution of magnetic nanoparticles

MR-2: Disk with aligned magnetic nanoparticle chains

Results: Mechanism of the Wobbling Revolution Stance

- Ordered magnetic nanoparticles (easy axis) in the disk can enhance the magnetic field-structure interactions
- Addition torque is induced to couple the structure orientation with the magnetic field

Results: Mechanism of the Wobbling Revolution Stance

Bz and By are playing different roles in the steering of the disk movement

2021

Scalable Function – (I): Disk microrobot scalable for magneto- and sensing- motilities

Unpublished data

2021

Scalable Function – (I): Disk microrobot scalable for magneto- and sensing- motilities

- Cooperation of magneto-motility and proton sensing ability
- Enhanced reaction rates lead to reduced response time
- Reusable and reversible proton-activated fluorescence response

Scalable Function – (II): Ratiometric protochromic microrobots by Embedding Upconversion Nanoparticles

Scalable Function – (III): Deep-tissue imaging of single microrobot by NIR-II nanoparticles

Conclusions

- We have proposed a stratified disk design of microrobots using a class of microfabricated PEGDA hydrogel polymers.
- This scalable architecture can monolithically integrate a broad spectrum of microrobotic functions with enhanced robotic maneuverability.
- The key to steering the disk structure lies in breaking the symmetry in the magnetic field control and magnetic composition.
- The disk microrobot can be rendered with high motility, manifesting itself as fast locomotion aslant in relative to the surface along the structural sidewall at a speed up to around 36 mm/s, about 60 body length (BL)/s.
- The cooperation of magneto-motility and chemical sensing functions of the microrobots were found to significantly reduce the response time. The use of UCNPs unlocked a ratio-metric protochromic microrobot by NIR excitation, and the use of NIR-II nanocrystals allows deep-tissue imaging of single microrobots.

Acknowledgments

Australian Government

National Health and Medical Research Council

