

Laurent A. FRANCIS ^{1,*}, Roselien VERCAUTEREN ¹, Audrey LEPRINCE ², and Jacques MAHILLON ²

 ¹ Electrical Engineering Department, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
 ² Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium

* Corresponding author: laurent.francis@uclouvain.be

Stable porous silicon membranes for fast bacterial detection

Optical sensing using porous silicon (PSi) substrates can be used for detecting hazardous bacteria and to reduce the usage of broad-spectrum antibiotics.

In most configurations, PSi optical biosensors are close-ended porous layers that limits their sensitivity and responsiveness due to diffusion-limited infiltration of the analytes in the porous layer. Also, PSi is a reactive material, its oxidation in buffer solutions results in undesirable time-varying shifts.

Three main improvement points are investigated:

- the **bacteria lysis** prior to its exposure to the sensor, such that the selective detection is based upon the percolation of bacterial residues inside the pores rather than the bacteria themselves;
- the flow-through in a PSi membrane that enhances the interactions between the lysate and the sensor's surface and reduces detection time;
- the stability over time in saline solutions helped by atomic layer deposition of metal oxides inside the pores, that is also helping with an increase of the optical signal to noise ratio thus reducing the limit of detection.

We tested the selective detection of *Bacillus cereus* lysate with concentrations between 10⁴ to 10⁶ CFU/mL. Future works are dedicated to further improvements, including optical signal enhancement techniques and dielectrophoretic assisted percolation in the porous silicon membrane.

Keywords: optical biosensor; porous silicon membrane; atomic layer deposition; bacteria.

porous silicon membranes for fast bacterial detection

Stable

Context: Antibiotic Microbial Resistance

Biosensing

Selective endolysin

✓ Can be added to sample volume
✓ No need for functionalization

Source endolysin illustration: Perez-Dorado, I., Campillo, N.E., Monterroso, B., Hesek, D., Lee, M., Paez, J.A., Garcia, P., Martinez-Ripoll, M., Garcia, J.L., Mobashery, S., Menendez, M., Hermoso, J.A. http://www.ebi.ac.uk/pdbe-srv/view/entry/2j8g/summary

Endolysin as a Biorecognition Element

Example of targeted bacteria: *B. cereus* (ATCC10987)

Bacteria found *e.g.* in food poisoning

(a) Before lysis

(b) After lysis with PlyB221

Porous Silicon Membrane Biosensor

Optical Detection Method Reflective Interferometric Fourier Transform Spectroscopy

Sensor Microfabrication Process

Porous Silicon Anodization

Electrochemical etching

Single crystalline wafer

Si + 2h⁺ + 6HF \rightarrow SiF₆²⁻ + H₂ + 4H⁺

Use of an **HF**-based electrolyte Based on **hole conduction** through the Si bulk

Illustration from Summer School for Nanotechnology 2019 presentation by Michael Sailor, UCSD

Porous Structure Layers

Sensing layer
Contrast layer → enhance optical signal
Mechanical → robustness support layer

Layer	Current density [mA/cm ²]	Time [s]	Pore diameter [nm]	Thickness [µm]	Porosity [%]
Sensing layer	200	50	41.1 ± 20.4	4.1 ± 0.7	75.4
Contrast layer	50	1500	14.6 ± 7.8	22.8 ± 6.8	48.5
Support layer	1000	2000	25.5 ± 10.4	_ *	_ *

Porous Structure Layers

Benefits of the Membrane

Targeted bacteria: 10⁶ CFU/mL of *B. cereus*, lysed by PlyB221

PSi layer: current studies on biosensing

Fast Detection

Targeted bacteria: 10⁶ CFU/mL of *B. cereus*, lysed by PlyB221

Limit of Detection and Selectivity

Targeted bacteria B. cereus lysed by PlyB221, vs. Staph. epidermidis

 $LoD < 10^5 CFU/ml$

Selectivity in mixed samples

A Versatile Biosensor

Targeted bacteria: Staph. epidermidis (ATCC35984), lysed by lysostaphin

Optical Signal Enhancement with ALD

Atomic Layer Deposition of ca. 6 nm aluminum oxide on top of thermal oxide

Refractive Index Sensitivity

 $PSi - SiO_2$ (thermal)

Signal intensity: 5 x increased \rightarrow decrease noise level Sensitivity: 2 x decreased \rightarrow LoD theoretically lower with ALD coating ICMA 2021

Stable Porous Si with ALD Coatings

Demonstrated over 3 hours in PBS

2021

Rasson, J., and Francis, L.A., J. Phys. Chem. C 2018, 122, 1, 331-338

Future work and perspectives

Decoration of Porous Silicon with Gold Nanoparticles via Layerby-Layer Nanoassembly for Interferometric and Hybrid Photonic/Plasmonic (Bio)sensing

Stefano Mariani, Alessandro Paghi, Antonino A. La Mattina, Aline Debrassi, Lars Dähne, and Giuseppe Barillaro ACS Applied Materials & Interfaces 2019 11 (46), 43731-43740 DOI: 10.1021/acsami.9b15737 Decoration with Ag nanoparticles for even more signal

Dielectrophoresis
 to assist particles
 flow through
 the membrane

Conclusions

- **Bacterial lysis** is a selective, efficient and versatile preparation of the analyte prior to its actual exposure to the sensor
- Flow-through in a PSi membrane offers an emerging label-free optical biosensing with low detection time (< 30 min) compared to single-ended PSi
- Atomic Layer Deposition of metal oxides in the porous material improves its stability over time in saline solutions, and may decrease further the Limit of Detection thanks to a strong signal enhancement

Acknowledgments

Thanks for financial support to the belgian Fund for Scientific Research F.R.S.-FNRS

Thanks to Gilles Scheen, Numa Couniot and Jonathan Rasson for their PhD researches related to the presented topic

Thanks to Clara Whyte Ferreira for her ongoing master thesis investigation on the membrane mechanical and chemical stabilisations

