

Bactericidal wet-spun cellulose acetate/polycaprolactone fibers: impact of cinnamon, clove and cajeput essential oils loaded onto the surface

CENTRO DE CIÊNCIA E TECNOLOGIATÊXTIL

www.2c2t.uminho.pt

Helena P. Felgueiras*, Natália C. Homem, Ana R. M. Ribeiro, Marta A. Teixeira, Joana C. Antunes, M. Teresa P. Amorim

Centro de Ciência e Tecnologia Têxtil (2C2T), Universidade do Minho, Portugal *helena.felgueiras@2c2t.uminho.pt

Introduction

Essential oils (EOs), which are complex biomolecules composed of volatile compounds, have emerged as a new strategy to deal with bacterial infections and as a valid alternative to synthetic drugs in the treatment of chronic wounds (CW) by promoting the regeneration of damaged tissues.

EOs Drawbacks

- cytotoxic at increased concentrations, which prevents systemic delivery;
- present low resistance to degradation by external factors (e.g. temperature, light, moisture);
- highly volatile in their free, unloaded form.

Goal of this Research

Engineer a biodegradable microfibrous target-delivery platform for EOs, that overcomes these biomolecules limitations for applications in infection control.

Results and Discussion

Loading Efficiency

EOs	Loading	Concentration
	(MIC %, SD < ± 3.0%)	(mg/mL)
Cinnamon Leaf (CLO)	14.42	0.12
Clove (CO)	66.08	0.55
Cajeput (CJO)	76.48	17.12

Fiber Morphology

No alterations introduced by EOs loading.

Uniform, homogeneous fibers (defect free) with an average diameter of <u>54-59 μ m.</u>

Materials and Methods

Wet-Spinning

Non-solvent induced phase inversion approach that allows the production of continuous polymeric microfibers.

Polymeric solution preparation

Solvents – acetic acid and acetone Polymer ratio – 3:1 CA/PCL (10/14 wt%) Solubilization conditions – 1 h at 75 °C and 200 rpm

Processing conditions

Flow Rate – 0.5 mL/h Needle Gauge – 18 Coagulation bath – Ethanol

EOs Minimum Inhibitory Concentrations (MICs)

Chemical Confirmation of EOs Incorporation

Antimicrobial Action

EOs	<i>Staphylococcus aureus</i> MIC (mg/mL)	<i>Escherichia coli</i> MIC (mg/mL)
Cinnamon Leaf (CLO)	0.82	0.82
Clove (CO)	0.83	0.83
Cajeput (CJO)	22.38	11.19

Fiber Loading: incubation at room temperature at 200 rpm in ethanolbased solution containing the CLO, CO and CJO at 2xMIC for 72 h (time determine for maximum loading efficiency).

Time (h)

Time (h)

Log reduction was most significant after 24 h of culture. At this point, it was evident that S. aureus was more susceptible to the prolonged action of the EOs than the *E. coli*, the only exception being the CJO.

Conclusions: The results demonstrated the potential of CA/PCL wetspun microfibers loaded with EOs for applications in biomedicine, in which treatment of infections are a main target. For more details please refer to **DOI: 10.3390/biom10081129**

Acknowledgments

This work is financed by FEDER funds through COMPETE and by national funds through FCT via the projects POCI-01-0145-FEDER-028074 and UID/CTM/00264/2020.

