The 1st International Electronic Conference on Antibiotics—The Equal Power of Antibiotics And Antimicrobial Resistance

Project registration number	CZ.02.2.69/0.0/0.0/16_027/0008371		
Name of the project	International Mobility of Researchers of Brno University of Technology		

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Presented by: Atul Tyagi

Date: 24.4.2021

Docking and molecular dynamics simulation study of plant origin antifungal peptides with fungal protein of plant pathogen Fusarium oxysporum

 Protein-peptide interactions play a key role in cell functions and their structural characterization is challenging for the discovery of new drugs

- CABS-dock introduces a successful docking for a potential therapeutic peptide to a target protein
- The CABS-dock web server provides an interface for modelling protein-peptide interactions using a highly efficient protocol for flexible docking of peptides to proteins
- The CABS-dock server peptide sequence takes only 4-30 amino acids in length as an input
- Our literature survey provided only 55 peptides out of 510 plant antifungal peptides based on above criteria

Table: 1 Top fifty-five best models based on high cluster density and low RMSD using the CABS-dock server

РНҮТО1 4				
	43.0347	2.5096	18.6126	108
РНУТО2 3	34.744	3.10845	28.3374	108
РНУТОЗ 3	33.4868	4.68842	13.902	157
РНУТО4	41.221	3.85726	19.3698	159
PHYTO5	93.2059	1.20164	19.7809	112
РНҮТО6 2	24.1826	5.37577	31.7782	130
РНУТО7 1	16.9603	7.07535	25.5927	120
РНУТО8 2	20.8742	5.98825	28.1455	125
РНУТО9 2	26.3897	4.39565	24.3733	116
РНУТО10 3	33.9131	3.56794	24.4612	121
РНУТО11 2	21.3125	7.78884	28.4952	166
РНУТО12 3	36.3688	3.79446	24.8309	138
PHYTO13 5	57.8178	1.43554	8.88006	83
РНУТО14 1	19.6346	4.78746	29.9645	94
РНУТО15 2	29.1095	6.01178	48.0312	175
РНУТО16 2	25.94	8.1727	32.9729	212
PHYTO17 5	55.6105	3.4346	24.3533	191
РНУТО18 2	26.2884	4.75494	24.9646	125
РНУТО19 2	26.6464	4.46589	32.0083	119
РНУТО20 2	23.0899	4.93723	19.6059	114
PHYTO21 3	37.8481	2.93277	20.2395	111
РНУТО22 3	39.6079	3.53465	32.153	140
РНУТО23 2	20.3506	7.46906	26.5846	152
PHYTO24 3	36.5879	3.52575	13.7793	129
РНҮТО25 2	25.4886	4.78645	23.2311	122
РНУТО26 2	29.0369	4.99365	16.7709	145
РНҮТО27 2	20.707	5.55368	25.6032	115
PHYTO28	30.3344	1.4505	11.5505	44
РНУТО29	31.871	3.7338	17.567	119
РНУТОЗО 2	20.4285	7.48954	27.1249	153
РНУТО31 2	25.1261	4.81571	27.5215	121
РНУТО32 3	38.7242	2.68566	21.5386	104
РНУТОЗЗ	31.8422	3.51735	35.6513	112
РНУТОЗ4 2	28.7822	4.3777	23.3995	126
РНУТО35	44.7786	2.81384	15.6405	126
РНУТОЗ6 2	22.3413	7.51969	27.9021	168
РНҮТО37 2	28.2654	7.00504	26.7736	198
РНУТОЗ8 2	24.1639	3.72457	13.3346	90
РНҮТОЗ9 2	20.8389	5.66248	31.6554	118
РНУТО40 2	20.8389	5.66248	31.6554	118
PHYTO41	22.252	5.48266	18.2149	122
РНУТО42 2	20.0459	7.83203	35.731	157
РНУТО43 1	16.6654	10.4408	44.9773	174
РНУТО44 2	20.8823	6.08171	36.7135	127
РНУТО45 2	20.305	10.1945	32.5832	207
РНУТО46	41.8317	2.10367	19.5646	88
РНҮТО47	24.7336	4.16438	18.773	103
РНУТО48 2	23.2952	4.37858	17.0232	102
PHYTO49	35.1461	3.27206	20.1735	115
РНУТО50	35.6574	3.05687	9.72862	109
РНУТО51	37.6915	3.68784	19.4973	139
PHYTO52	38.6859	2.68832	21.2965	104
РНУТО53	27.9275	8.84433	27.7962	247
			29 1621	
РНУТО54 5	55.8749	4.02685	20.1031	225

the CABS-dock server							
Project Name	Cluster density	Average	Max RMSD	Number of			
		RMSD		elements			
PHYTO5 (A)	93.2059	1.20164	19.7809	112			
PHYTO13 (B)	57.8178	1.43554	8.88006	83			
PHYTO28 (C)	30.3344	1.4505	11.5505	44			
PHYTO1 (D)	43.0347	2.5096	18.6126	108			
PHYTO52 (E)	38.6859	2.68832	21.2965	104			

Table: 2 Top five best models based on high cluster density and low RMSD using

Figure:1 CABS-dock based top-5 models have been described in <u>A (PHYTO5)</u> B (PHYTO13) C (PHYTO28) D (PHYTO1) and E (PHYTO52) in this figure.

The Contact maps allows investigating the interaction between the receptor and peptide

In the **PHYTO5** dataset model contact map shows that peptide made of 5 amino acid chains in which **ARG C1** have interacting residue is **SER A 55**, **PHE A 56**, **SER A 57** and **GLU A 59** of the receptor protein residue

Same in the last **TRP C5** have interacting residue is **THR A 54, PHE A 56, PRO A 72, GLU A 74, HIS A 83, ARG A 84** and **ILE A 85** amino acid residues

LEU C 12 VAL C 11 LYS C 10 LEU C 9 PEPTIDE RESIDUE INDEX ILE C 8 LYS C 7 LYS C 6 PHE C 5 LEU C 4 LYS C 3 TRP C 2 LYS C1 ALAASS GUT A 36 ARGANS SHE ASS MELASS ALAATO VALADO ALAANO 880A20 C15A130 SERAHO ILE AND THR ASS Receptor residue index

CONTACT MAP OF THE INTERFACE BETWEEN RECEPTOR AND PEPTIDE

PHYTO28(C)

Figure: 3 Dataset models B (PHYTO13), C (PHYTO28), D (PHYTO1) and E (PHYTO52) in Contact maps

Molecular dynamics has become an important research method, covering millions of atomic-level systems. It's most important to consider hydrogen bonds' properties in drug design because they are essential for drug specificity, metabolism, and adsorption. We have performed molecular dynamics studies on the top 5 models, but we have only described our most important PHYTO5 model.

Our study with contact maps supported by simulations for the top model PHYTO5 suggests that SER57, GLU59, ARG65, HIS68, GLU74, and GLU 87 are significant hydrogen bonds of the peptides. Our best model project PHYTO5 has an RMSD value of **1.20164**, a good starting point for more precise modeling.

Protein RMSD Findings:

The plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection

- RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of the simulation are around some thermal average structure
- Our Simulation shows the RMSD value is large, but its acceptable because the protein is big, and the system has started to equilibrate at the end
- Most importantly during the entire run, the amino acid of the proteins binding site has overlapped with the peptide for bond formation

Ligand RMSD Findings:

- Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and its binding pocket.
- The ligand values observed are significantly lower than the RMSD of the protein, then it is likely that the ligand has not diffused away from its initial binding site

Figure: 4 Protein-Ligand RMSD in PHYTO5 Model

Protein RMSF:

- The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain
- On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation
- The observation shows that the tails (Nand C-terminal) fluctuate more than any other part of the protein.
- Secondary structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the protein, and thus fluctuate less than the loop regions

Figure: 5 Protein-RMSF in PHYTO5 Model

Protein Interaction:

- Protein interactions with the ligand can be monitored throughout the simulation
- Protein-ligand interactions (or 'contacts') are categorized into four types: Hydrogen Bonds, Hydrophobic, Ionic and Water Bridges
- The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7 suggests that 70% of the simulation time the specific interaction is maintained
- Values over 1.0 are possible as some protein residue may make multiple contacts of same subtype with the ligand
- In our case GLU59 shows multiple interactions exceeding 100%.

Ligand RMSF:

- The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom positions
- The ligand RMSF may give you insights on how ligand fragments interact with the protein and their entropic role in the binding event

Ligand Protein Contacts:

- A schematic of detailed ligand atom interactions with the protein residues.
- Interactions that occur more than 30.0% of the simulation time in the selected trajectory (0.00 through 100.00 nsec), are shown
- Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a single type with the same ligand atom
- In our current findings, SER57, GLU59, PRO60, ARG65 and ILE85 of the receptor fungal protein are responsible in forming multiple interactions with the peptide ligand exceeding 30% contacts
- Consideration of hydrogen-bonding properties in drug design is most important because of their strong influence on drug specificity, metabolization and adsorption

Figure: 8 Protein-Ligand contacts in PHYTO5 Model

Conclusions

- Our study suggests, that out of 55 project dataset models, top 5 project dataset models such as PHYTO5, PHYTO13, PHYTO28, PHYTO1 and PHYTO52 might be used as antifungal inhibitor
- Our study with contact maps supported by simulations for the top model PHYTO5 suggests that SER57, GLU59, ARG65, HIS68, GLU74 and GLU 87 are involve in major hydrogen bond with the peptides
- Consideration of hydrogen-bonding properties in drug design is most important because of their strong influence on drug specificity, metabolization and
- To the best of our knowledge, there is no investigation of molecular interaction study of plant origin antifungal peptides with target fungal proteins of microbes infecting plants and animals

Thank you

