

Jerentulina Vijayarasa¹, Kandiah Pakeerathan^{1,*} and Gunasingam Mikunthan¹,

¹Department of Agricultural Biology, Faculty of Agriculture, University of Jaffna, Ariviyal Nagar, 44000, Kilinochchi. Sri Lanka

*Correspondence: pakeerathank@univ.jfn.ac.lk; Tel.: +94-077-696-9511

INTRODUCTION

Spirulina platensis (Gomant)Geitler 1925)

- Prokaryotic blue green microalgae
- A well known single cell protein
- helical shape
- Varying degree of Spiralization
 - Different thickness
 - Number of spirals
- Effective phytoremediation tool

Bio-remediation

- Bio remediation is a process coupling with living microorganisms to break down environmental pollutants, by consuming nutrients present in those waste in order to clean a polluted site.
- organic substance synthesis are carbon (C), nitrogen (N) and phosphorus (P) (Delrue et al., 2016).
- low-cost nitrogen source

Justification for this research

- Increase the usage of local protein *Spirulina*
- Demonstration & encourages its production in small scale
- Waste management by waste recycling.
- Encourages the cultivation of local protein in farms

Quick waste removal from selected wastewater from agro-based industries, and identify the suitable organic wastes as the costless media for growing S. platensis for its powder production

Culturing Spirulina in Zarrouk's media

Culturing Spirulina in Agro-based wastes

Experimental setup

		Volume Ratio	Ratio of distilled water	
Type of waste	Treatment	of waste	(Total volume 1000ml)	
Fish pond water	T1	1	3	
	T2	2	2	
	T3	3	1	
	T4	4	-	
	T1	1	3	
Parboiled rice	T2	2	2	
	T3	3	1	
liquid	T 4	4	-	
	T1	1	3	
Poultry unit waste water	T2	2	2	
	T3	3	1	
	T4	4	-	
Grain soaked water	T1	1	3	
	T2	2	2	
	T3	3	1	
	T4	4	-	

Statistical Analysis

- Data collected in the whole study was analyzed by Microsoft Excel 2013 and SAS software (9.4 version).
- Duncan's Multiple Ranges Test (DMRT) was used to determine the least significant differences among the treatments at *P*> 0.05.

RESULTS & DISCUSSION

Optical density values of *S.platensis* **in Zarrouk's media**

Optical density values of *S.platensis* in **fish pond water**

-T1 - T2 - T3 - T40.567 0.6 0.538 0.5 0.439 Value 0.36 0.36 0.4 0.3 OD 0.2 0.089 0.1 0.055 0.047 0 3 5 7 9 11 13 15 1

Days after inoculation

Optical density values of *S.platensis* **in parboiled rice liquid**

-T1 - T2 - T3 - T4

Optical density values of *S.platensis* **in poultry unit waste**

1.6 1.452 1.313 1.4 1.256 1.2 1 0.822 **OD** value 0.787 0.8 0.637 0.627 0.6 0.4 0.269 0.2 0 3 11 1 5 7 13 15 Days after inoculation

-T1 - T2 - T3 - T4

Optical density values of *S.platensis* in **grain soaked water**

0.35 0.284 0.282 0.280 0.30 0.271 0.267 0.259 0.25 OD value 0.204 0.196 0.20 0.15 0.10 0.05 0.00 1 3 5 7 9 11 13 15 Days after inoculation

-T1 - T2 - T3 - T4

Comparison of chemical characters

No	Substrate	Chemical characters at the beginning of culturing		Chemical characters at the end of culturing	
		pН	EC(mS/cm)	pН	EC(mS/cm)
1	Parboiled rice liquid	5.21	1.79	6.01	1.01
2	Poultry unit	9.28	1.501	7.5	9.11
3	Fish pond wastewater	7.89	1.87	6.9	9.98
4	Grain soaked water	8.21	1.99	7.1	8.34

Conclusions

- poultry wastewater promotes better growth of S. platensis than other locally available wastewater tested.
- agro-based industry's wastewater can be bioremediated by growing Spirulina, and nutrientenriched wastewater can be used for mass culturing of Spirulina without nutrient supplements.

Acknowledgments

